
Simulink® Desktop Real-Time™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Desktop Real-Time™ User's Guide
© COPYRIGHT 1999–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
January 1999 First printing New for Version 1.0 (Release 11.0)
January 2000 Second printing Revised for Version 1.5 (Release 11.1+)
September 2000 Third printing Revised for Version 2.0 (Release R12)
June 2001 Online only Revised for Version 2.1 (Release R12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Fourth printing Revised for Version 2.5 (Release 14)
October 2004 Fifth printing Revised for Version 2.5.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.5.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.6 (Release 14SP3)
March 2006 Online only Revised for Version 2.6.1 (Release 2006a)
September 2006 Online only Revised for Version 2.6.2 (Release 2006b)
March 2007 Online only Revised for Version 2.7 (Release 2007a)
September 2007 Online only Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)
September 2010 Online only Revised for Version 3.6 (Release 2010b)
April 2011 Online only Revised for Version 3.7 (Release 2011a)
September 2011 Online only Revised for Version 3.8 (Release 2011b)
March 2012 Online only Revised for Version 4.0 (Release 2012a)
September 2012 Online only Revised for Version 4.1(Release 2012b)
March 2013 Online only Revised for Version 4.2 (Release 2013a)
September 2013 Online only Revised for Version 4.3 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 5.0 (Release 2015a)
September 2015 Online only Revised for Version 5.1 (Release 2015b)
March 2016 Online only Revised for Version 5.2 (Release 2016a)
September 2016 Online only Revised for Version 5.3 (Release 2016b)
March 2017 Online only Revised for Version 5.4 (Release 2017a)
September 2017 Online only Revised for Version 5.5 (Release 2017b)
March 2018 Online only Revised for Version 5.6 (Release 2018a)
September 2018 Online only Revised for Version 5.7 (Release 2018b)
March 2019 Online only Revised for Version 5.8 (Release 2019a)
September 2019 Online only Revised for Version 5.9 (Release 2019b)
March 2020 Online only Revised for Version 5.10 (Release 2020a)
September 2020 Online only Revised for Version 5.11 (Release 2020b)
March 2021 Online only Revised for Version 5.12 (Release 2021a)
September 2021 Online only Revised for Version 5.13 (Release 2021b)

Getting Started
1

Simulink Desktop Real-Time Product Description 1-2
Key Features . 1-2

Real-Time Execution in Connected IO Mode . 1-3

Real-Time Execution in Run in Kernel Mode . 1-5

Installation and Configuration
2

Software Components . 2-2
MATLAB Environment . 2-2
Simulink Software . 2-2
Simulink Coder Software . 2-2
Known Limitations . 2-3

Install Real-Time Kernel . 2-4
Install the Kernel Using MATLAB . 2-4
Uninstall the Kernel . 2-5

Run Confidence Test . 2-6
Run the Model sldrtex_vdp . 2-6
Display Status Information . 2-8
Examples Library . 2-9

Basic Procedures
3

Prepare for Real-Time Execution . 3-2
Prepare I/O Devices . 3-2
Prepare Real-Time Application . 3-2

Create a Real-Time Application . 3-4

Create a Simulink Model . 3-5

File System I/O . 3-9

v

Contents

Configure a Model for Simulink Desktop Real-Time 3-10
Specify a Default Configuration Set . 3-10
Enter Configuration Parameters Manually . 3-11
Enter Scope Parameters for Signal Tracing . 3-12

Simulate Model in Connected IO Mode . 3-15

Set Run in Kernel Mode Code Generation Parameters 3-17

Prepare Run in Kernel Mode Application . 3-20

Set Run in Kernel Mode (External Mode) Scope Parameters 3-21

Execute Real-Time Application in Run in Kernel Mode by Using Run in
Real Time . 3-24

Execute Real-Time Application in Run in Kernel Mode by Using Step by
Step Commands . 3-26

Execute Real-Time Application with S-Functions in Run in Kernel Mode
. 3-28

Run Application from MATLAB Command Line . 3-30
Connected IO Mode (Normal Mode) . 3-30
Accelerator Mode . 3-30
Run in Kernel Mode (External Mode) . 3-30

Inspect Simulink® Desktop Real-Time™ Signals with Simulation Data
Inspector . 3-32

Signal Logging to the Workspace . 3-35

Set Scope Parameters for Logging to Workspace 3-36

Set Run in Kernel Mode Properties for Logging to Workspace 3-38

Plot Signal Data Logged to Workspace . 3-40

Signal Logging to a File . 3-42

Set Scope Parameters for Logging to File . 3-43

Set Run in Kernel Mode Properties for Logging to File 3-45

Set Run in Kernel Mode Data Archiving Parameters 3-47

Plot Signal Data Logged to File . 3-49

Tunable Block Parameters and Tunable Global Parameters 3-51
Tunable Parameters . 3-51
Inlined Parameters . 3-51
Tune Parameters by Using Run in Kernel Mode 3-52
Tune Parameters by Using Hold Updates and Update All Parameters . . . 3-52
Tune Parameters by Using the MATLAB Language 3-52

vi Contents

Tune Block Parameters by Using the Block Dialog Box 3-54

Tune Block Parameters with Data Navigation . 3-57
Create Parameter Object . 3-57
Tune Parameter Object . 3-59

Sweep MATLAB Variables with MATLAB Scripting 3-62

Boards, Blocks, and Drivers
4

Use I/O Boards . 4-2
Install and Configure I/O Boards and Drivers . 4-2
PCI Bus Board . 4-3
Compact PCI Board . 4-4
PCMCIA Board . 4-4

Use I/O Driver Blocks . 4-5
View Simulink Desktop Real-Time Library . 4-5
Route Signals from an I/O Block . 4-5
Configure Channel Selection . 4-6

Use Analog I/O Drivers . 4-9
Configure I/O Driver Characteristics . 4-9
Normalize Scaling for Analog Inputs . 4-9

Use Vector CAN Drivers . 4-12

Custom I/O Driver Blocks
A

Custom I/O Driver Basics . A-2
Supported C Functions . A-2
Unsupported C Functions . A-2
Incompatibility with Operating System API Calls A-3
I/O Register Access from S-Functions Limitation A-3

Simulink Desktop Real-Time Examples
5

Real-Time Van der Pol Simulation . 5-2

Water Tank Model with Dashboard . 5-5

Real-Time Signal Generator . 5-8

vii

Real-Time Controller . 5-10

Real-Time Filter . 5-12

Frequency Measurement . 5-14

PWM Frequency and Duty Measurement . 5-16

Packet Input/Output . 5-18

Stream Input/Output . 5-21

CAN Input/Output . 5-24

CAN Input/Output with Vehicle Network Toolbox 5-27

Execution Time Measurement and Block Profiling 5-30

Apply Simulink Desktop Real-Time Model Templates to Create Real-Time
Models . 5-34

UDP String Data and Message Handling . 5-36

Sync Models by Using Arduino Connected I/O Board 5-38

Troubleshooting
6

Troubleshoot Missing Desktop Real-Time Tab . 6-2
What This Issue Means . 6-2
Try This Workaround . 6-2

Troubleshoot sldrtext Incorrect Version Error . 6-3
What This Issue Means . 6-3
Try This Workaround . 6-3

Troubleshoot Delayed or Missing Scope Output . 6-4
What This Issue Means . 6-4
Try This Workaround . 6-4

Troubleshoot Signals Not Plotted in Scope Blocks 6-5
What This Issue Means . 6-5
Try This Workaround . 6-5

Troubleshoot Vendor Software Missing Issues . 6-7
What This Issue Means . 6-7
Try This Workaround . 6-7

Troubleshoot Builds of Referenced Models . 6-8
What This Issue Means . 6-8
Try This Workaround . 6-8

viii Contents

Troubleshoot Slow or Halted Simulation on Windows 6-9
What This Issue Means . 6-9
Try This Workaround . 6-9

Troubleshoot C++ Standard Template Library (STL) Compilation Errors
for Real-Time Application . 6-10

What This Issue Means . 6-10
Try This Workaround . 6-10

ix

Getting Started

• “Simulink Desktop Real-Time Product Description” on page 1-2
• “Real-Time Execution in Connected IO Mode” on page 1-3
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

1

Simulink Desktop Real-Time Product Description
Run Simulink models in real time on your computer

Simulink Desktop Real-Time provides a real-time kernel for executing Simulink models on a
Windows® or Mac laptop or desktop. It includes library blocks that connect to a range of I/O devices.
You can create and tune a real-time system for rapid prototyping or hardware-in-the-loop simulation
with your computer.

Simulink Desktop Real-Time supports real-time performance with lower sample rate for Connected
IO mode simulation in Simulink, and supports higher sample rates for Run in Kernel mode
simulation in Simulink with Simulink Coder™.

Key Features
• Real-time closed-loop execution of Simulink models
• Signal visualization and parameter tuning while model is running
• Real-time performance approaching a 1 kHz sample rate in Simulink Connected IO mode
• Real-time performance approaching a 20 kHz sample rate in Simulink Run in Kernel mode (with

Simulink Coder)
• Blocks supporting more than 250 I/O devices (including analog I/O, digital I/O, counters, encoders,

and frequency output) and communication protocols (including UDP, serial, and CAN)
• Connection to I/O devices installed in your computer or in a Thunderbolt expansion chassis

1 Getting Started

1-2

Real-Time Execution in Connected IO Mode
Simulink Desktop Real-Time Connected IO mode extends normal mode or accelerator mode to run in
real time.

The simulation algorithm for a non-real-time normal mode or accelerator model runs entirely within
Simulink. The model can use either a fixed-step or a variable-step solver and runs as fast as it can,
given the presence of competing operating system processes. However, it is not synchronized with a
real-time clock and cannot easily be used to operate real-time hardware.

You can synchronize a Simulink model with a real-time clock using Simulink Desktop Real-Time I/O
blocks. In Connected IO mode, Simulink executes the simulation algorithm, while a separate
operating system kernel mode process runs I/O drivers for the I/O blocks. Both the Simulink process
and the kernel mode process run on the host machine, using a shared memory interface to transfer
parameter data.

• Signal acquisition — You can capture and display signals from your real-time application while it is
running. Simulink retrieves signal data from the I/O driver and displays it in the same Scope
blocks you used for simulating your model in nonreal time.

• Parameter tuning — You can change parameters in your Simulink block diagram and have the new
parameters take effect in your Simulink model in real time. The effects then propagate through
the I/O driver to the hardware.

Note You cannot run a Simulink Desktop Real-Time model in rapid accelerator mode.

I/O Driver

Normal Mode
or

Accelerator Mode

Operating System
Kernel Mode

Process

Simulink

Model
Methods

Solver

Simulink
Process

MATLAB

 Real-Time Execution in Connected IO Mode

1-3

Because only the I/O drivers are synchronized with the real-time clock, Simulink can use either a
fixed-step or a variable-step solver. The Sample Time setting in the Simulink Desktop Real-Time
block does not change the step size of the simulation. For a fixed-step simulation, you set the step size
in the Fixed step size box from the Configuration Parameters dialog box. For a variable-step
simulation, you set the step size by using the Min Step Size attribute, or Simulink determines the
step size automatically.

In Connected IO mode, at each sample interval Simulink evaluates each real-time block. Simulink
writes the input data into a buffer that it passes to the kernel mode process. The kernel mode process
propagates the data to the hardware, which writes response data into another buffer. At the next time
tick, Simulink reads the response data and propagates it to the rest of the model.

A consequence of this kind of limited synchronization is that your simulation can be configured to
miss real-time clock ticks and their associated data points. Ticks can be missed under the following
circumstances:

• Complexity of Model — The model can be so complex that Simulink cannot keep up with the real-
time kernel. In this case, the number of missed ticks increases steadily with time. Once the
number of missed ticks exceeds Maximum Missed Ticks, an error occurs, even if Maximum
Missed Ticks is set to a large value. You can identify this situation by a rising straight line on a
Scope connected to the optional Missed Ticks port.

• Process Contention — The model generally executes faster than required to keep up with the
kernel. However, process contention or some random operating system condition prevents
Simulink from executing the model over some time period. In this case, the number of missed
ticks jumps to some number, then decreases to zero as Simulink catches up with the kernel. You
can identify this situation by a sawtooth-like shape on a Scope connected to the Missed Ticks
port.

• Variable-Step Solver — If you are using a variable-step solver, the number of ticks per algorithm
step can vary during simulation. If Simulink execution does not reach the Simulink Desktop Real-
Time blocks in time to synchronize with the tick, the number of missed ticks jumps to some
number. As Simulink catches up with the kernel, the number of missed ticks decreases to zero. As
with process contention, you can identify this situation by a sawtooth-like shape on a Scope
connected to the Missed Ticks port.

See Also

Related Examples
• “Simulate Model in Connected IO Mode” on page 3-15
• “Run Application from MATLAB Command Line” on page 3-30
• “Real-Time Van der Pol Simulation” on page 5-2

1 Getting Started

1-4

Real-Time Execution in Run in Kernel Mode
A higher-performance alternative to Connected IO mode is Run in Kernel mode. In this mode, you
use Simulink Coder to link generated algorithm code with I/O driver code generated from the I/O
blocks. The resulting executable runs in operating system kernel mode on the development computer
and exchanges parameter data with Simulink via a shared memory interface.

• Signal acquisition — You can capture and display signals from your real-time application while it is
running. Signal data is retrieved from the real-time application and displayed in the same
Simulink Scope blocks you used for simulating your model.

• Parameter tuning — You can change parameters in your Simulink block diagram and have the new
parameters passed automatically to the real-time application. External mode changes parameters
in your real-time application while it is running in real time.

The Run in Kernel mode executable is fully synchronized with the real-time clock. The main role of
Simulink is to read and display simulation results returned from the executable.

Procedures related to real-time execution in run in kernel mode include:

1 “Set Run in Kernel Mode Code Generation Parameters” on page 3-17
2 “Prepare Run in Kernel Mode Application” on page 3-20
3 “Set Run in Kernel Mode (External Mode) Scope Parameters” on page 3-21
4 “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-24
5 “Execute Real-Time Application in Run in Kernel Mode by Using Step by Step Commands” on

page 3-26
6 “Execute Real-Time Application with S-Functions in Run in Kernel Mode” on page 3-28

Note Use a fixed-step solver in Run in Kernel mode.

 Real-Time Execution in Run in Kernel Mode

1-5

I/O Driver

Simulink Desktop Real-Time
Target Executable

Solver

Model
Methods

Operating System
Kernel Mode

Process

External
Mode

Simulink

Simulink
Process

MATLAB

In Run in Kernel mode, the real-time application and the I/O drivers run in the kernel mode process.
Using the I/O drivers to communicate with the hardware, the application stores contiguous response
data in memory accessible to Simulink until a data buffer is filled. When the buffer is filled, the real-
time application continues to run while Simulink transfers the data to the MATLAB® environment
through Simulink external mode. Transfer of data is less critical than maintaining deterministic real-
time updates at the required sample interval. After model computations are finished, data transfer
runs at a lower priority while the process waits for another interrupt to trigger the next model
update.

Data captured within one buffer is contiguous. When a buffer of data has been transferred, it is
immediately plotted in a Simulink Scope block. The data can also be saved directly to a MAT-file
using the data archiving feature of the Simulink external mode.

With data archiving, each buffer of data can be saved to its own MAT-file. The MAT-file names can be
automatically incremented, allowing you to capture and automatically store many data buffers.
Although points within a buffer are contiguous, the time required to transfer data back to Simulink

1 Getting Started

1-6

pauses data collection until the entire buffer has been transferred. This pause can result in lost
sample points between data buffers.

See Also

Related Examples
• “Set Run in Kernel Mode Code Generation Parameters” on page 3-17
• “Prepare Run in Kernel Mode Application” on page 3-20
• “Set Run in Kernel Mode (External Mode) Scope Parameters” on page 3-21
• “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-

24
• “Run Application from MATLAB Command Line” on page 3-30
• “Real-Time Van der Pol Simulation” on page 5-2

 Real-Time Execution in Run in Kernel Mode

1-7

Installation and Configuration

• “Software Components” on page 2-2
• “Install Real-Time Kernel” on page 2-4
• “Run Confidence Test” on page 2-6

2

Software Components
Simulink Desktop Real-Time is a self-targeting rapid prototyping system where the host and the
target computer are the same computer.

MATLAB Environment
The MATLAB environment provides the design and data analysis tools that you use when creating and
testing Simulink models. In particular, see:

• “Importing and Exporting Data”
• “Plotting Data”

Simulink Software
Simulink software provides an environment where you model your physical system and controller as a
block diagram. You create the block diagram by using a mouse to connect blocks and a keyboard to
edit block parameters. You can use Simulink Desktop Real-Time software with most Simulink blocks,
including discrete-time and continuous-time systems. Simulink Coder supports C code S-functions.

With Simulink Desktop Real-Time software, you can remove the physical system model and replace it
with Simulink Desktop Real-Time I/O driver blocks connected to your sensors and actuators. The
Simulink Desktop Real-Time I/O library supports more than 200 boards.

Note For some boards, the Simulink Desktop Real-Time software does not support some of the board
functions. Check the MathWorks® website for an updated list of supported boards and functions at
www.mathworks.com/hardware-support/simulink-desktop-real-time.html.

Simulink Coder Software
The Simulink Coder software provides utilities to convert your Simulink models into C code and then
compile the code into a real-time executable.

Note

• Simulink Coder is required for Run in Kernel mode.
• Compiler support is included as part of the product installation. No additional or external compiler

is required.
• MATLAB Coder is required for Simulink Coder installation.

Simulink Desktop Real-Time software is designed for maximum flexibility during rapid prototyping.
This flexibility allows parameter tuning and signal tracing during a real-time run, but increases the
size of the generated code. However, Simulink Coder code generation software provides other code
formats that generate more compact code for embedded applications.

2 Installation and Configuration

2-2

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

Known Limitations
• In Run in Kernel mode, the Simulink Desktop Real-Time software does not support the following:

• Blocks that do not support code generation
• To File blocks

• Limitations with Simulink Coder code generation software:

• In Run in Kernel mode, MATLAB S-functions have limited support. See “Execute Real-Time
Application with S-Functions in Run in Kernel Mode” on page 3-28.

• When you use a continuous-time system and generate code for Run in Kernel mode execution
with Simulink Coder code generation software, you must use a fixed-step integration
algorithm.

• The Simulink Coder product provides an API for the MATLAB Parallel Server™ or Parallel
Computing Toolbox™ products to perform parallel builds that reduce build time for referenced
models. However, this API does not support parallel builds for models whose system target file
parameter is set to sldrt.tlc or sldrtert.tlc. In other words, you cannot perform parallel
builds for Simulink Desktop Real-Time.

See Also

More About
• “Importing and Exporting Data”
• “Plotting Data”

External Websites
• www.mathworks.com/hardware-support/simulink-desktop-real-time.html

 Software Components

2-3

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

Install Real-Time Kernel
The Simulink Desktop Real-Time software requires a real-time kernel that interfaces with the
operating system. The Simulink Desktop Real-Time kernel assigns the highest priority of execution to
your real-time executable, which allows it to run without interference at the selected sample rate.
During real-time execution, the kernel intervenes to give the model priority to use the CPU to execute
each model update at the prescribed sample times. Once a model update completes, the kernel
releases the CPU to run other operating system-based applications that need servicing.

Install the Kernel Using MATLAB
You must install the kernel before you can run a Simulink Desktop Real-Time application. During
software installation, the Simulink Desktop Real-Time software is copied onto your hard drive, but the
Simulink Desktop Real-Time kernel is not automatically installed into the operating system.

Installing the kernel configures it to start running in the background each time you start your
computer. The following procedure describes how to use the command sldrtkernel -install.
(You can also use the command sldrtkernel -setup instead.) To install the kernel:

1 In the MATLAB Command Window, type:

sldrtkernel -install

The MATLAB Command Window displays one of these messages:

You are going to install the Simulink Desktop Real-Time kernel.
Do you want to proceed? [y] :

or:
There is a different version of the Simulink Desktop Real-Time kernel installed.
Do you want to update to the current version? [y] :

2 Type y to continue installing the kernel, or n to cancel installation without changing the
installation.

If you type y, the MATLAB environment installs the kernel and displays the message:

The Simulink Desktop Real-Time kernel has been successfully installed.

3 If a message appears asking you to restart your computer, do so before attempting to use the
kernel, or your Simulink Desktop Real-Time model does not run.

4 After installing the kernel, check the installation by typing:

rtwho

The MATLAB Command Window displays a message that shows the kernel version number,
followed by timer, driver, and other information.

Once the kernel is installed, it remains idle. You can leave it installed. While the kernel is idle, the
operating system controls the execution of standard applications, such as Internet browsers, word
processors, and the MATLAB environment. The kernel becomes active when you begin execution of
your model, and becomes idle again after model execution completes.

2 Installation and Configuration

2-4

Uninstall the Kernel
If you encounter problems with Simulink Desktop Real-Time software, you can uninstall the kernel.
Once uninstalled, the kernel is no longer active. The kernel executable file remains on your hard drive
so that you can later reinstall it.

Uninstall the Kernel Using MATLAB

To uninstall the kernel from MATLAB:

1 In the MATLAB Command Window, type:

sldrtkernel -uninstall

The MATLAB Command Window displays the message:

You are going to uninstall the Simulink Desktop Real-Time kernel.
Do you want to proceed? [y]:

2 Type y to continue uninstalling the kernel, or n to stop uninstalling without changing the
installation.

If you type y, the MATLAB environment uninstalls the kernel by removing it from memory, then
displays the message:

The Simulink Desktop Real-Time kernel has been successfully uninstalled.

3 After uninstalling the kernel, check that it was uninstalled. Type:

rtwho

The MATLAB Command Window displays the message:

Simulink Desktop Real-Time installation is not complete.
Please type 'sldrtkernel -setup' to complete the installation.
Type 'help sldrtkernel' for more information.

Uninstall the Kernel Using Development Computer Command Line

Uninstalling the MATLAB environment does not uninstall the Simulink Desktop Real-Time kernel. If
you uninstalled the MATLAB environment without uninstalling the kernel, open a development
computer command window and type:

sldrtkernel -uninstall

The sldrtkernel program uninstalls the kernel by removing it from memory, then displays the
message:

The Simulink Desktop Real-Time kernel uninstalled successfully.

This procedure works only with the Windows operating system.

See Also
sldrtkernel

 Install Real-Time Kernel

2-5

Run Confidence Test
Simulink Desktop Real-Time includes several example models you can use to test your installation.
These models are preconfigured with settings such as target and scope settings, sample time, and
integration algorithm. To see these models, type sldrtexamples in the MATLAB Command Window.

Note

• You can run examples in Run in Kernel mode (initial setting) or Connected IO mode.
• You cannot run a Simulink Desktop Real-Time model in rapid accelerator mode.

Once you have finished installing the Simulink Desktop Real-Time software and kernel, test the
installation by running the model sldrtex_vdp. If you change your installation, repeat this test to
confirm that the Simulink Desktop Real-Time software is still working. To open the example model,
type sldrtex_vdp in the MATLAB Command Window, or start MATLAB Help, open Simulink
Desktop Real-Time, and choose Examples > Real-Time Van der Pol Simulation.

Run the Model sldrtex_vdp
The model sldrtex_vdp does not have I/O blocks. This design lets you can run this model regardless
of the I/O boards in your computer. Running this model tests the installation by running Simulink
Coder code generation software, Simulink Desktop Real-Time software, and the Simulink Desktop
Real-Time kernel.

After you have installed the Simulink Desktop Real-Time kernel, you can test the entire installation by
building and running a real-time application. The Simulink Desktop Real-Time software includes the
model sldrtex_vdp, which already has Simulink Coder options selected for you.

1 In the MATLAB Command Window, type:

sldrtex_vdp

The Simulink Editor opens and displays the model sldrtex_vdp.

2 Installation and Configuration

2-6

2 To build the model, connect to the Simulink Desktop kernel, change to Run in Kernel mode
simulation, and run the model in real time, on the Desktop Real-Time tab, click Run in Real
Time.

After building the model and displaying messages in the Diagnostic Viewer, the target application
begins running.

 Run Confidence Test

2-7

Tip You can execute the build, connect, and run operations as individual steps. On the Desktop
Real-Time tab, from the Run in Real Time button, select available Step by Step Commands.

3 To stop the simulation before it ends, on the Desktop Real Time tab, click Stop.

The real-time application stops running. The Scope window stops displaying the output signals.

Display Status Information
The Simulink Desktop Real-Time software provides the command rtwho for displaying the kernel
version number, followed by timer, driver, and other information. To see this information, in the
MATLAB Command Window type:

rtwho

The command displays several lines of information in the MATLAB Command Window. Some possible
lines and their interpretations are:

TIMERS: Number Period Running
 1 0.01 Yes

The indicated timers exist on your system with the period and run status shown for each timer.

DRIVERS: Name Address Parameters
 Humusoft AD512 0x300 []
 ecg 0 []

The indicated device drivers are installed on your system at the address and with the parameters
shown for each driver.

2 Installation and Configuration

2-8

Examples Library
The examples library includes models with preset values and dialog boxes. These models include
simple signal processing and simple control examples that use no I/O blocks, use A/D blocks only, and
use both A/D and D/A blocks.

To run an example that uses I/O blocks, you must configure the block to match the I/O board installed
in your computer. There are some simulation mode limitations.

• You can run examples in Run in Kernel mode (initial setting) or Connected IO mode.
• You cannot run a Simulink Desktop Real-Time model in rapid accelerator mode.

To see these models from the MATLAB environment:

1 Type sldrtexamples in the MATLAB Command Window.
2 In the Simulink Desktop Real-Time Examples window, from the list, select the example to open it.

See Also

More About
• “Troubleshoot Vendor Software Missing Issues” on page 6-7
• “Troubleshoot sldrtext Incorrect Version Error” on page 6-3
• “Troubleshoot Delayed or Missing Scope Output” on page 6-4
• “Troubleshoot Signals Not Plotted in Scope Blocks” on page 6-5

 Run Confidence Test

2-9

Basic Procedures

• “Prepare for Real-Time Execution” on page 3-2
• “Create a Real-Time Application” on page 3-4
• “Create a Simulink Model” on page 3-5
• “File System I/O” on page 3-9
• “Configure a Model for Simulink Desktop Real-Time” on page 3-10
• “Simulate Model in Connected IO Mode” on page 3-15
• “Set Run in Kernel Mode Code Generation Parameters” on page 3-17
• “Prepare Run in Kernel Mode Application” on page 3-20
• “Set Run in Kernel Mode (External Mode) Scope Parameters” on page 3-21
• “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-24
• “Execute Real-Time Application in Run in Kernel Mode by Using Step by Step Commands”

on page 3-26
• “Execute Real-Time Application with S-Functions in Run in Kernel Mode” on page 3-28
• “Run Application from MATLAB Command Line” on page 3-30
• “Inspect Simulink® Desktop Real-Time™ Signals with Simulation Data Inspector” on page 3-32
• “Signal Logging to the Workspace” on page 3-35
• “Set Scope Parameters for Logging to Workspace” on page 3-36
• “Set Run in Kernel Mode Properties for Logging to Workspace” on page 3-38
• “Plot Signal Data Logged to Workspace” on page 3-40
• “Signal Logging to a File” on page 3-42
• “Set Scope Parameters for Logging to File” on page 3-43
• “Set Run in Kernel Mode Properties for Logging to File” on page 3-45
• “Set Run in Kernel Mode Data Archiving Parameters” on page 3-47
• “Plot Signal Data Logged to File” on page 3-49
• “Tunable Block Parameters and Tunable Global Parameters” on page 3-51
• “Tune Block Parameters by Using the Block Dialog Box” on page 3-54
• “Tune Block Parameters with Data Navigation” on page 3-57
• “Sweep MATLAB Variables with MATLAB Scripting” on page 3-62

3

Prepare for Real-Time Execution
In this section...
“Prepare I/O Devices” on page 3-2
“Prepare Real-Time Application” on page 3-2

To observe how Simulink models respond to real-world behavior, connect the real-time application to
physical I/O devices. You have access to a library of I/O driver blocks that provide connections
between devices and applications. To prepare for real-time execution, install I/O devices in your
computer and select the corresponding Simulink Desktop Real-Time library blocks.

Actions to consider when preparing for real-time execution include:

1 “Use I/O Boards” on page 4-2
2 “Use I/O Driver Blocks” on page 4-5
3 “Use Analog I/O Drivers” on page 4-9
4 “Use Vector CAN Drivers” on page 4-12
5 “Custom I/O Driver Basics” on page A-2
6 “Simulink Desktop Real-Time Pane”
7 “Execution Time Measurement and Block Profiling” on page 5-30

Prepare I/O Devices
1 Choose I/O plugin modules from www.mathworks.com/hardware-support/simulink-

desktop-real-time.html.
2 Acquire the modules and install them in your computer.
3 Refer to the vendor documentation for vendor-specific requirements.

If the hardware requires the installation of vendor software, install the vendor software on your
computer.

4 Restart your computer and, from the MATLAB Command Window, start the Simulink Desktop
Real-Time kernel.

Prepare Real-Time Application
1 Replace Simulink I/O blocks with Simulink Desktop Real-Time blocks that represent the

functionality of your I/O modules.
2 Open the dialog box for each block and associate the block with the driver for the corresponding

I/O module.

Set the other block parameters as required by your model.
3 To configure the model for Simulink Desktop Real-Time code generation, in the Simulink Editor,

from the Apps tab, select Desktop Real-Time.

This operation selects the sldrt.tlc code generation target and sets other configuration
parameters for compatibility with Simulink Desktop Real-Time.

4 Set the Simulink Desktop Real-Time configuration parameters as required by your model.

3 Basic Procedures

3-2

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html
https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

5 If the performance of your model in Run in Kernel mode does not meet your system
requirements, add Execution Time and Timestamp blocks for analysis. See “Execution Time
Measurement and Block Profiling” on page 5-30.

The next step is to set the simulation mode to Connected IO mode or Run in Kernel mode to attain
the required sample rate, and then run the simulation.

See Also
Execution Time | Timestamp

More About
• “Create a Real-Time Application” on page 3-4
• “Execution Time Measurement and Block Profiling” on page 5-30

External Websites
• www.mathworks.com/hardware-support/simulink-desktop-real-time.html

 Prepare for Real-Time Execution

3-3

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

Create a Real-Time Application
A Simulink model is a graphical representation of your physical system. You create a Simulink model
for a non-real-time simulation of your system, and then you use the Simulink model to create a real-
time application. This example uses sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

Note You cannot run a Simulink Desktop Real-Time model in rapid accelerator mode.

To run sldrtex_model in Connected IO mode:

1 “Configure a Model for Simulink Desktop Real-Time” on page 3-10
2 “Simulate Model in Connected IO Mode” on page 3-15

To run sldrtex_model as a real-time application:

1 “Set Run in Kernel Mode Code Generation Parameters” on page 3-17
2 “Prepare Run in Kernel Mode Application” on page 3-20
3 “Set Run in Kernel Mode (External Mode) Scope Parameters” on page 3-21
4 “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-24

See Also

More About
• “Create a Simulink Model” on page 3-5
• “Run Application from MATLAB Command Line” on page 3-30

3 Basic Procedures

3-4

Create a Simulink Model
Create a simple model of a damped square-wave generator. You can use this model as an example to
learn other capabilities that are useful with Simulink Desktop Real-Time software.

1 In the MATLAB Home tab, click the Simulink button.
2 Click Blank Model, and then Create Model.

An empty Simulink Editor opens.
3 On the Simulation tab, click Library Browser.
4 In the Library Browser:

• Select Simulink > Sources, and then add a Signal Generator block to the model.
• Select Simulink > Continuous, and then add a Transfer Fcn block to the model.
• Select Simulink > Sinks, and then add a Scope block to the model.

5 Make the following block-to-block connections:

• Signal Generator output to Transfer Fcn input
• Transfer Fcn output to Scope input

6 Double-click the Transfer Fcn block. The Block Parameters dialog box opens. In the Numerator
text box, enter:

[10000]

In the Denominator text box, enter:

[1 70 10000]

Click OK.

 Create a Simulink Model

3-5

7 Double-click the Signal Generator block. From the Wave form list, select square.

In the Amplitude text box, enter:

1

In the Frequency text box, enter:

20

From the Units list, select rad/sec.

Click OK.

3 Basic Procedures

3-6

The completed Simulink block diagram looks like the figure.

8 In the Simulink Editor, on the Simulation tab, click Save > Save as. In the File name text box,
enter a file name for your Simulink model and click Save. For example, type:

sldrtex_model

The Simulink software saves your model in the file sldrtex_model.

The Simulink Desktop Real-Time software supports model referencing. See “Model Reference
Basics”.

The Simulink Desktop Real-Time software supports file I/O, with constraints. See “File System I/O” on
page 3-9.

To specify a default Simulink Desktop Real-Time configuration set for your model, see “Specify a
Default Configuration Set” on page 3-10. If you activate this configuration set for your model, you
can build your real-time application later without setting additional configuration parameters.

To configure your model manually, see “Enter Configuration Parameters Manually” on page 3-11.

 Create a Simulink Model

3-7

See Also

More About
• “Model Reference Basics”
• “File System I/O” on page 3-9
• “Specify a Default Configuration Set” on page 3-10
• “Enter Configuration Parameters Manually” on page 3-11

3 Basic Procedures

3-8

File System I/O
You can use file I/O blocks in Connected IO mode or accelerator mode simulation in real time. In
these modes, the real-time kernel does not perform I/O, Simulink itself does.

When run in Run in Kernel mode, the Simulink Desktop Real-Time software does not include a file
system. Therefore, in a Simulink Desktop Real-Time model, you cannot use blocks that generate file
I/O calls such as fopen or fprintf. Examples of such blocks are To File and From File. To access
files in Run in Kernel mode, use the Packet Input, Packet Output, Stream Input, or Stream Output
blocks, and select the driver Standard Devices > File.

If a Simulink Desktop Real-Time model contains an I/O block, an error can occur when you try to
compile or use Run in Kernel mode with the model. Even if no error occurs, the block has no effect
on either simulation or code execution.

To log signal data without a file system, use the techniques described in “Signal Logging to the
Workspace” on page 3-35. For information about using Run in Kernel mode to execute a Simulink
Desktop Real-Time application, see “Execute Real-Time Application in Run in Kernel Mode by Using
Run in Real Time” on page 3-24.

See Also

More About
• “Signal Logging to the Workspace” on page 3-35
• “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-

24

 File System I/O

3-9

Configure a Model for Simulink Desktop Real-Time
After you create a Simulink model, you can enter configuration parameters for the model. These
parameters control many properties of the model for simulation and code generation.

A configuration set is a named set of values for model parameters, such as solver type and simulation
start or stop time. Every Simulink model is created with a default configuration set, called
Configuration, that initially specifies default values for the model parameters. You can then create
additional configuration sets and associate them with the model. For more information about
Simulink configuration, see “Manage Configuration Sets for a Model”.

The easiest way to specify configuration parameters for a Simulink Desktop Real-Time model is to
assign the default Simulink Desktop Real-Time configuration set programmatically, as described in
“Specify a Default Configuration Set” on page 3-10. You can also set parameters manually, as
described in “Enter Configuration Parameters Manually” on page 3-11.

Specify a Default Configuration Set
After you create a Simulink model, you can use the sldrtconfigset function to specify a default
Simulink Desktop Real-Time configuration set for the model. Usually, using sldrtconfigset
provides the configuration parameter values that the model requires.

The following procedure uses the model sldrtex_model. To open this model, in the MATLAB
Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model (see “Create a Simulink Model” on page 3-5).

1 If you have not already saved the model, on the Simulation tab, click Save > Save as. In the
File name text box, enter a file name for your Simulink model and click Save. For example, type:

sldrtex_model

The Simulink software saves your model in the file sldrtex_model.
2 In the MATLAB Command Window, type:

sldrtconfigset('sldrtex_model')

The default Simulink Desktop Real-Time configuration set, SimulinkDesktopRealTime, is now
active for the sldrtex_model model.

3 Save the model.

For a description of how to build your Simulink Desktop Real-Time application, see “Create a Real-
Time Application” on page 3-4.

To revert to the default configuration set, Configuration, or other configuration set you have for the
model, use Model Explorer. For a description of how to use Model Explorer, see the Simulink
documentation.

Your model uses a Simulink Desktop Real-Time configuration set when you change the System
target file value to a Simulink Desktop Real-Time one, such as sldrt.tlc or sldrtert.tlc. The
software creates the Simulink Desktop Real-Time configuration set only if one does not exist.

3 Basic Procedures

3-10

Enter Configuration Parameters Manually
The configuration parameters give information to Simulink software for running a simulation.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model.

1 On the Desktop Real-Time tab, click Hardware Settings. In the Configuration Parameters
dialog box, click the Solver tab.

2 In the Start time field, enter 0.0. In the Stop time field, enter the amount of time you want
your model to run. For example, enter 10.0 seconds.

3 From the Type list, select Fixed-step. Simulink Coder does not support variable step solvers.
4 From the Solver list, select a solver. For example, select the general-purpose solver ode5

(Dormand-Prince).
5 Under Additional options, in the Fixed step size field, enter a sample time. For example, enter

0.001 seconds for a sample rate of 1000 samples/second.
6 Leave the parameter Treat each discrete rate as a separate task cleared. (For models with

blocks that have different sample times, select this parameter.)

7 Click OK.

 Configure a Model for Simulink Desktop Real-Time

3-11

Enter Scope Parameters for Signal Tracing
You enter or change scope parameters to specify the x-axis and y-axis in a Scope window. Other
properties include the number of graphs in one Scope window and the sample time for models with
discrete blocks.

After you add a Scope block to your Simulink model, you can enter the scope parameters for signal
tracing:

1 In the Simulink Editor, double-click the Scope block.
2

On the toolbar, click the Parameters button .
3 Click the Main tab. In the Sample time text box, enter -1, which indicates that this block

inherits its value from its parent model. If you have discrete blocks in your model, enter the
Fixed step size value that you entered in the Configuration Parameters dialog box.

4 Click the Time tab. In the Time span box, enter 1.

3 Basic Procedures

3-12

5 Click the Display tab. In the Y-min and Y-max text boxes, enter the range for the y-axis in the
Scope window. For example, enter -2 and 2.

6 Click OK.

See Also

More About
• “Manage Configuration Sets for a Model”

 Configure a Model for Simulink Desktop Real-Time

3-13

• “Create a Real-Time Application” on page 3-4
• “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-

24

3 Basic Procedures

3-14

Simulate Model in Connected IO Mode
You can use Simulink Connected IO mode to run a real-time simulation. This procedure uses the
model sldrtex_model. To open this model, in the MATLAB Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have loaded that model.

1 In the Simulink Editor, double-click the Scope block.

The Simulink software opens a Scope window with an empty graph.
2 On the Desktop Real-Time tab, select Mode > Connected IO for the simulation mode.
3 Open the block parameters of the Real-Time Sync block in your Simulink Desktop Real-Time

model.
4 To prevent missed ticks, set values for the Sample Time and Maximum Missed Ticks block

parameters.
5 To begin simulation, on the Desktop Real-Time tab, click Run in Real-Time.

The Simulink software runs the simulation and plots the signal data in the Scope window.

6 To stop the simulation before it ends, on the Simulation tab, click Stop.

The real-time application stops running, and the Scope window stops displaying the output
signals.

 Simulate Model in Connected IO Mode

3-15

See Also

More About
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

3 Basic Procedures

3-16

Set Run in Kernel Mode Code Generation Parameters
After you create a Simulink model, you can enter simulation parameters. Simulink Coder uses these
parameters for creating C code and building a real-time application.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model.

1 In the Simulink Editor, on the Desktop Real-Time tab, click Hardware Settings.
2 In the Configuration Parameters dialog box, click the Code Generation node.
3 In the Target selection section, click the Browse button at the System target file list.
4 In the System target file browser, select the system target file for building a Simulink Desktop

Real-Time application, sldrt.tlc, and click OK.

The dialog box enters the system target file sldrt.tlc, the template makefile sldrt.tmf, and
the make command make_rtw into the Code Generation pane.

If you have the Embedded Coder® product, you can build an ERT target application. To build an
ERT target application, in the Target selection section, click the Browse button at the System
target file list. Click sldrtert.tlc, and then click OK.

Although not visible in the Code Generation pane, when you click OK you also configure the
external target interface MEX file sldrtext. This file allows Run in Kernel mode to pass new
parameters to the real-time application and to return signal data from the real-time application.
The data is displayed in Scope blocks or saved with signal logging.

 Set Run in Kernel Mode Code Generation Parameters

3-17

Do not set Default parameter behavior to Inlined on the Optimization node under Code
Generation. Inlining parameters is for custom targets when you want to reduce the amount of
RAM or ROM with embedded systems. Also, if you select inlining parameters, you disable the
parameter tuning feature. Do not inline parameters because PCs have more memory than
embedded systems.

5 Click the Hardware Implementation node. The default values are derived from the
architecture of the development computer. For example, for a 64-bit Intel® machine, they are:

• Device vendor — Intel
• Device type — x86-64

3 Basic Procedures

3-18

6 Click OK.

See Also

More About
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

 Set Run in Kernel Mode Code Generation Parameters

3-19

Prepare Run in Kernel Mode Application
In Run in Kernel mode, you must first create an executable target application. The Simulink Coder
code generation software creates C code from your Simulink model. The bundled C compiler compiles
and links that C code into a real-time application.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model.

1 In the Simulink Editor, from the Apps tab, click Desktop Real-Time.

This operation selects configuration parameters for use by the Simulink Coder code generation
software. See “Set Run in Kernel Mode Code Generation Parameters” on page 3-17.

2 On the Desktop Real-Time tab, click Run in Real Time.

• The Simulink Coder code generation software creates the C code source files sldrtex_model.c
and sldrtex_model.h.

• The build process creates the makefile sldrtex_model.mk from the template makefile
sldrt.tmf.

• The build process creates the real-time application by using sldrtex_model.mk. On Windows,
the build process creates the binary file sldrtex_model.rxw64. On Mac OS, it creates the
binary file sldrtex_model.rxm64.

The binary file sldrtex_model.rx*64 is referred to as a real-time application. You can run the
real-time application with the Simulink Desktop Real-Time kernel.

After you create a real-time application, you can exit MATLAB, and restart MATLAB again, and then
connect and run the executable without rebuilding your code. For more information, see “Execute
Real-Time Application in Run in Kernel Mode by Using Step by Step Commands” on page 3-26.

See Also

More About
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

3 Basic Procedures

3-20

Set Run in Kernel Mode (External Mode) Scope Parameters
Connected IO mode and accelerator modes run the simulation algorithm in Simulink and access the
external hardware by using drivers running in operating system kernel mode. The Simulink block
diagram is a user interface to your real-time application.

Run in Kernel mode connects your Simulink model to your real-time application. You can use the
Simulink block diagram as a user interface as you can in Connected IO mode or accelerator mode.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model.

After you have created a real-time application, you can enter scope parameters for signal tracing with
Simulink Run in Kernel mode:

1 In the Simulink Editor, on the Desktop Real-Time tab, click Prepare > Hardware Settings.
2 In the Configuration Parameters dialog box, select the Code Generation > Simulink Desktop

Real-Time node.
3 If you select the External mode check box, your changes affect the real-time application.

Check that the MEX-file name label has an entry of sldrtext. The MEX-file sldrtext.mex* is
supplied with the Simulink Desktop Real-Time software. This file works with Simulink Run in
Kernel mode and supports uploading signal data and downloading parameter values.

Click OK.

 Set Run in Kernel Mode (External Mode) Scope Parameters

3-21

4 In the Simulink Editor, on the Desktop Real-Time tab, click Prepare > Control Panel. In the
External Mode Control Panel, click the Signal & Triggering button.

5 Select the Select all check box. From the Source list, select manual. From the Mode list, select
normal.

The X under Signal selection indicates that a signal is tagged for data collection. T indicates
that the signal is tagged as a trigger signal.

6 In the Duration field, enter the number of sample points in a data buffer. For example, to specify
a sample rate of 1000 samples/second and a stop time of 10 seconds, enter:

10000
7 Select the Arm when connecting to target check box.

If you do not select this check box, data is not displayed in the Scope window.

8 Click Close.

3 Basic Procedures

3-22

See Also

More About
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

 Set Run in Kernel Mode (External Mode) Scope Parameters

3-23

Execute Real-Time Application in Run in Kernel Mode by Using
Run in Real Time

After you build the real-time application, you can run your model in real time. In Run in Kernel
mode, you execute your real-time application to observe the behavior of your model in real time with
the generated code.

Note You cannot run a real-time application in Rapid Accelerator mode.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It shows how to use Run in Real Time to complete these operations with one click:

• Build — Create a real-time application from the model.
• Connect — Establish a connection between the model and the kernel. This connection permits

exchange of commands, parameters, and logged data.
• Start — Start execution of the application in real time.

1 Open the model sldrtex_model.
2 In the Simulink Editor, on the Desktop Real-Time tab, click Run in Real Time.

Simulink builds the real-time application, changes to external mode simulation, connects the
model and kernel, and runs the simulation. You can accomplish these and other simulation
operations as individual steps. For more information, see “Execute Real-Time Application in Run
in Kernel Mode by Using Step by Step Commands” on page 3-26.

3 To stop the simulation before it ends, on the Desktop Real-Time tab, click the Stop.

In this example, the Scope window displays 1000 samples in 1 second, increases the time offset, and
then displays the samples for the next 1 second.

Transfer of data is less critical than calculating the signal outputs at the selected sample interval.
Therefore, data transfer runs at a lower priority in the CPU time that remains after real-time
application computations are performed. As a result, data points can be omitted from the Scope block
display.

3 Basic Procedures

3-24

See Also

More About
• “Execute Real-Time Application in Run in Kernel Mode by Using Step by Step Commands” on

page 3-26
• “Simulate Model in Connected IO Mode” on page 3-15

 Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time

3-25

Execute Real-Time Application in Run in Kernel Mode by Using
Step by Step Commands

After you build the real-time application, you can run your model in real time. In Run in Kernel
mode, you execute your real-time application to observe the behavior of your model in real time by
using the generated code.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It shows how to use Step by Step Commands to complete simulation operations as individual steps.

Buttons Step by Step Command Operations
Select Run in Kernel mode for simulation.

Build the real-time application.

Connects the model and kernel.

Disconnect the real-time application from the model and kernel.

Start running the real-time simulation.

Stop running the real-time simulation.

1 Open the model sldrtex_model.
2 In the Simulink Editor, on the Desktop Real-Time tab, click Mode > Run in Kernel.
3 In the Simulink Editor, on the Desktop Real-Time tab, click Run in Real Time > Build.

Simulink builds the real-time application.

3 Basic Procedures

3-26

4 On the Desktop Real-Time tab, click Run in Real Time > Connect.

Simulink connects the model and kernel.
5 On the Desktop Real-Time tab, click Start.

Simulink starts running the simulation.
6 To stop the simulation before it ends, on the Desktop Real-Time tab, click Stop.

These Step by Step Commands let you run a real-time simulation for a previously built real-time
application.

1 If continuing from the previous procedure, close the model sldrtex_model.
2 Open the model sldrtex_model.
3 In the Simulink Editor, on the Desktop Real-Time tab, click Mode > Run in Kernel.
4 On the Desktop Real-Time tab, click Run in Real Time > Connect.

Simulink connects the model and kernel.
5 On the Desktop Real-Time tab, click Start.

Simulink starts running the simulation.
6 To stop the simulation before it ends, on the Desktop Real-Time tab, click Stop.

See Also

More About
• “Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time” on page 3-24
• “Simulate Model in Connected IO Mode” on page 3-15

 Execute Real-Time Application in Run in Kernel Mode by Using Step by Step Commands

3-27

Execute Real-Time Application with S-Functions in Run in
Kernel Mode

You can use S-functions in Run in Kernel mode when the S-functions are self-contained. For
example, the S-functions only call a limited subset of the standard C library, such as math and string
functions and do not call file I/O, console I/O, or Windows API functions. An example of not-self-
contained S-function would be a function that needs to #include <windows.h>.

Note that being able to simulate an S-function with other code generation targets—such as grt.tlc,
ert.tlc, or slrealtime.tlc—does not a prove that it can be simulated with sldrt.tlc. For
example, S-functions that are linked with dynamically linked libraries (DLLs) on Windows generally
do not simulate with Simulink Desktop Real-Time because the DLLs are not available to the real-time
kernel.

In particular, the following functions are not supported in the C source code:

• File I/O (fopen and others)
• Process management (spawn, exit, and others)
• Signals and exceptions (signal, longjmp, __try and others)
• Time functions (clock and others)
• Any functions from the Windows API

The following C library functions are supported for use with Simulink Desktop Real-Time:

• Data conversion functions: abs, atof, atoi, atol, itoa, labs, ltoa, strtod, strtol,
strtoul, ultoa,

• Memory allocation functions: calloc, free, malloc,
• Memory manipulation functions: _memccpy, memcpy, memchr, memcmp, _memicmp, memmove,

memset,
• String manipulation functions: strcat, strchr, strcmp, strcpy, strcspn, _strdup,

_stricmp, strlen, _strlwr, strncat, strncmp, strncpy, _strnset, strpbrk, strrchr,
_strrev, _strset, strspn, strstr, strtok, _strupr,

• Mathematical functions: acos, asin, atan, atan2, ceil, cos, cosh, div, exp, fabs, floor,
fmod, frexp, ldexp, ldiv, log, log10, max, min, modf, pow, rand, sin, sinh, sqrt, srand,
tan, tanh, uldiv,

• Character class tests and conversion: isalnum, isalpha, _isascii, iscntrl, isdigit,
isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, isxupper, isxlower,
_toascii, tolower, toupper,

• Searching and sorting: bsearch, qsort,
• Dummy functions - (can be there but do nothing) exit,
• Console I/O: fprintf, printf,

See Also

More About
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

3 Basic Procedures

3-28

• “Custom I/O Driver Basics” on page A-2
• “Software Components” on page 2-2

 Execute Real-Time Application with S-Functions in Run in Kernel Mode

3-29

Run Application from MATLAB Command Line
You can use the MATLAB command-line interface as an alternative to using the Simulink UI. Enter
commands directly in the MATLAB Command Window or save them in a script file.

After you build the real-time application, you can run your model in real time.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already created a real-time application from that model.

Connected IO Mode (Normal Mode)
1 In the MATLAB Command Window, type:

set_param(gcs,'SimulationMode','normal')
2 To start running the simulation, type:

set_param(gcs,'SimulationCommand','start')
3 To stop running the simulation, type:

set_param(gcs,'SimulationCommand','stop')

Accelerator Mode
1 In the MATLAB Command Window, type:

set_param(gcs,'SimulationMode','accelerator')
2 To start running the simulation, type:

set_param(gcs,'SimulationCommand','start')
3 To stop running the simulation, type:

set_param(gcs,'SimulationCommand','stop')

Run in Kernel Mode (External Mode)
1 In the MATLAB Command Window, type:

set_param(gcs,'SimulationMode','external')
2 To load the real-time application and connect it to the Simulink block diagram, type:

set_param(gcs,'SimulationCommand','connect')

Model sldrtex_model loaded
3 To start running the real-time application, type:

set_param(gcs,'SimulationCommand','start')

3 Basic Procedures

3-30

4 To stop the real-time application, type:

set_param(gcs,'SimulationCommand','stop')

See Also

More About
• “Real-Time Execution in Connected IO Mode” on page 1-3
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

 Run Application from MATLAB Command Line

3-31

Inspect Simulink® Desktop Real-Time™ Signals with Simulation
Data Inspector

This example shows how to use the Simulation Data Inspector (SDI) to log signal data from the real-
time application. Use Simulink® Run in Kernel mode to establish a communication channel between
your Simulink® block diagram and your real-time application. Control which signals to display by
selecting them in the model. You can log signal data from models referenced at arbitrary levels within
a model hierarchy.

This example uses the model sldrtex_model. To open this example, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot, 'toolbox', 'sldrt', 'examples',
'sldrtex_model')))

1 Open sldrtex_model.
2 In the Simulink Editor, on the Simulation tab, set the simulation stop time to, for example, 30

seconds.
3 In the model, select the signals Signal Generator and Transfer Fcn.
4 On the Desktop Real-Time tab, click Log Signals. A faint Simulation Data Inspector icon

appears next to each signal.
5 To start the real-time execution in Run in Kernel mode, on the Desktop Real-Time tab, click

Run in Real Time. The Simulation Data Inspector button glows, indicating that Simulation Data
Inspector has data available for viewing.

6 On the Desktop Real-Time tab, click Data Inspector.
7 In the Simulation Data Inspector, select the signals SignalGenerator:1 and Transfer

Fcn:1. Simulation Data Inspector displays plotted data.

3 Basic Procedures

3-32

10. To stop the simulation, click the Stop button.

11. After the simulation, use the toolbar buttons to explore the data. For example, to view the
simulation between seconds 2 and 4, in Simulation Data Inspector, click the Zoom in Time button.
Drag the cursor over the range from 2 to 4.

 Inspect Simulink® Desktop Real-Time™ Signals with Simulation Data Inspector

3-33

12. To save the Simulation Data Inspector session as a .mat file, click Save.

See Also
Simulation Data Inspector

More About
• “Water Tank Model with Dashboard” on page 5-5

3 Basic Procedures

3-34

Signal Logging to the Workspace
Logging signals to the workspace saves data to a variable in your MATLAB base workspace. You can
use MATLAB functions for data analysis and MATLAB plotting functions for visualization. You can
save data to a variable during a simulation or during an execution.

The steps in this process are:

1 “Set Scope Parameters for Logging to Workspace” on page 3-36
2 “Set Run in Kernel Mode Properties for Logging to Workspace” on page 3-38
3 “Plot Signal Data Logged to Workspace” on page 3-40

If your model contains Outport blocks, you cannot save signal data in Run in Kernel mode.
Simulink supports signal logging with Outport blocks in Connected IO mode or accelerator modes
only, when Simulink runs the simulation algorithm.

Tip In Run in Kernel mode, do not enter or select parameters on the Data I/O tab in the
Configuration Parameters dialog box. Instead, add a Scope block to your Simulink model to log signal
data.

See Also

More About
• “Signal Logging to a File” on page 3-42

 Signal Logging to the Workspace

3-35

Set Scope Parameters for Logging to Workspace
Data is saved to the MATLAB workspace through a Simulink Scope block. For data to be saved, set
Scope block parameters. After you create a Simulink model and add a Scope block, you can enter the
scope parameters for signal logging to the MATLAB workspace.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model.

1 In the Simulink Editor, on the Desktop Real-Time tab, select Mode > Run in Kernel.
2 In the model diagram, double-click the Scope block.
3

On the Scope toolbar, click the Parameters button .
4 In the Scope Parameters dialog box, click the Logging tab.
5 Do one of the following:

• If you are running a normal mode simulation in Connected IO mode, select the Limit data
points to last check box, and enter the number of sample points to save.

• If you are running an external mode simulation in Run in Kernel mode, do not select the
Limit data points to last check box.

When you are using Simulink Desktop Real-Time software, use the Duration value to set the
number of sample points you save. To set the Duration value, see “Set Run in Kernel Mode
Properties for Logging to Workspace” on page 3-38. For more information, see “External Mode
Simulation with TCP/IP or Serial Communication” (Simulink Coder).

6 Select the Log data to workspace check box. In the Variable name text box, enter the name of
a MATLAB variable. The default name is ScopeData.

7 From the Save format list, select one of Structure with time, Structure, Array, and
Dataset. For example, to save the sample times and signal values at those times, select
Structure with time.

3 Basic Procedures

3-36

8 Click OK.

When you modify a value in the Scope parameters dialog box, you must click the Apply or OK
button for the changes to take effect. Rebuild your real-time application before connecting and
starting it. If you do not rebuild, an error dialog box opens. If you do not click Apply, your
executable runs, but it uses the old settings.

See Also

More About
• “Signal Logging to a File” on page 3-42

 Set Scope Parameters for Logging to Workspace

3-37

Set Run in Kernel Mode Properties for Logging to Workspace
Data is saved to the MATLAB workspace through a Simulink Scope block. Set signal and triggering
properties only when you are running a real-time application. If you are running a Connected IO
mode or accelerator mode simulation, you can skip this procedure.

After you create a Simulink model and add a Scope block, you can enter the signal and triggering
properties for logging to the MATLAB workspace.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

The steps in this procedure assume that you have already loaded that model and have completed the
steps in “Set Scope Parameters for Logging to Workspace” on page 3-36.

1 In the Simulink Editor, on the Desktop Real-Time tab, click Prepare > Control Panel.
2 In the External Mode Control Panel, click the Signal & Triggering button.
3 Click the Select all button. From the Source list, select manual. From the Mode list, select

normal.

The X under Signal selection designates that a signal has been tagged for data collection, and T
designates that the signal has been tagged as a trigger signal.

4 In the Duration field, enter the number of sample points in a data buffer. Enter a Duration
value equal to the total number of sample points that you must collect for a run. For example, if
you have a sample rate of 1000 samples/second and a stop time of 10 seconds, enter:

10001

Set the time axis for Simulink Scope blocks equal to the sample interval (in seconds) times the
number of points in each data buffer. This setting displays one buffer of data across the entire
Simulink Scope plot.

5 Clear the Limit data points to last check box. See “Set Scope Parameters for Logging to
Workspace” on page 3-36.

For more information, see “External Mode Simulation with TCP/IP or Serial Communication”
(Simulink Coder).

3 Basic Procedures

3-38

6 Click OK.

In the External Signal & Triggering dialog box, click the OK button for the changes you made to
take effect. You do not have to rebuild your real-time application.

See Also

More About
• “Signal Logging to a File” on page 3-42

 Set Run in Kernel Mode Properties for Logging to Workspace

3-39

Plot Signal Data Logged to Workspace
To visualize non-real-time simulated data or real-time application data, use the MATLAB plotting
functions.

After running your real-time application and logging data to the MATLAB workspace, you can plot the
data.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you saved your data to the variable ScopeData.

The steps in this procedure assume that you have already loaded that model and have completed the
steps in “Set Scope Parameters for Logging to Workspace” on page 3-36 and “Set Run in Kernel Mode
Properties for Logging to Workspace” on page 3-38.

1 In the Simulink Editor, on the Desktop Real-Time tab, click Run in Real Time.

When the real-time application runs, it creates the ScopeData variable that you configured in
“Set Run in Kernel Mode Properties for Logging to Workspace” on page 3-38.

2 To show the structure of the variable ScopeData, in the MATLAB Command Window, type:

ScopeData

ScopeData =

 struct with fields:

 time: [2001×1 double]
 signals: [1×1 struct]
 blockName: 'sldrtex_model/Scope'

To list the contents of the structure signals, type:

ScopeData.signals

ans =

 struct with fields:

 values: [2001×1 double]
 dimensions: 1
 label: ''
 title: ''
 plotStyle: 0

3 To plot the first 1000 points, type:

plot(ScopeData.time(1:1000),ScopeData.signals.values(1:1000))

The MATLAB environment plots the first 1000 samples over 0.0000–0.9990 seconds.

3 Basic Procedures

3-40

4 The variable ScopeData is not automatically saved to your hard disk. To save the variable
ScopeData, type:

save ScopeData

The MATLAB environment saves the scope data to the file ScopeData.mat.

See Also

More About
• “Signal Logging to a File” on page 3-42

 Plot Signal Data Logged to Workspace

3-41

Signal Logging to a File
Logging signals to a file saves data to a variable in your MATLAB workspace, and then saves that data
to a MAT-file. You can use MATLAB functions for data analysis and MATLAB plotting functions for
visualization on the data in the MAT-file.

The steps in this process are:

1 “Set Scope Parameters for Logging to File” on page 3-43
2 “Set Run in Kernel Mode Properties for Logging to File” on page 3-45
3 “Set Run in Kernel Mode Data Archiving Parameters” on page 3-47
4 “Plot Signal Data Logged to File” on page 3-49

If your model contains Outport blocks, you cannot save signal data in Run in Kernel mode.
Simulink supports signal logging to a file in Connected IO mode or accelerator mode only, when
Simulink runs the simulation algorithm.

Tip In Run in Kernel mode, do not enter or select parameters on the Data I/O tab in the
Configuration Parameters dialog box. Instead, add a Scope block to your Simulink model and use it to
log signal data for data archiving.

See Also

More About
• “Signal Logging to the Workspace” on page 3-35

3 Basic Procedures

3-42

Set Scope Parameters for Logging to File
You save data to a file by first saving the data to the MATLAB workspace through a Simulink Scope
block. For data to be saved, set Scope block parameters.

After you create a Simulink model and add a Scope block, you can enter the scope parameters for
signal logging to a file.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you have already loaded that model.

1 In the Simulink Editor, on the Desktop Real-Time tab, select Mode > Run in Kernel.
2 In the model diagram, double-click the Scope block.
3

On the Scope toolbar, click the Parameters button .
4 Click the Logging tab.
5 Do one of the following:

• If you are running a normal mode simulation in Connected IO mode, select the Limit data
points to last check box, and enter the number of sample points to save.

• If you are running an external mode simulation in Run in Kernel mode, do not select the
Limit data points to last check box.

When you are using Simulink Desktop Real-Time software, use the Duration value to set the
number of sample points you save. To set the Duration value, see “Set Run in Kernel Mode
Properties for Logging to File” on page 3-45. For more information, see “External Mode
Simulation with TCP/IP or Serial Communication” (Simulink Coder).

6 Select the Log data to workspace check box. In the Variable name text box, enter the name of
a MATLAB variable. The default name is ScopeData.

In the Scope parameters dialog box, you must select the Log data to workspace check box to
be able to save data to a file. If you do not select the Log data to workspace check box, the
MAT-files for data logging are created, but they are empty.

7 From the Save format list, select one of Structure with time, Structure, Array, and
Dataset. For example, to save the sample times and signal values at those times, select
Structure with time.

 Set Scope Parameters for Logging to File

3-43

8 Click OK.

Before connecting and starting the application with changed settings, rebuild your real-time
application. If you do not rebuild after these changes, an error occurs.

See Also

More About
• “Signal Logging to the Workspace” on page 3-35

3 Basic Procedures

3-44

Set Run in Kernel Mode Properties for Logging to File
Data is saved to a file by first saving the data to the MATLAB workspace through a Simulink Scope
block. Before running a real-time application, set signal and triggering properties.

After you create a Simulink model and add a Scope block, you can enter the signal and triggering
properties for data logging to a file.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

The steps in this procedure assume that you have already loaded that model and have completed the
steps in “Set Scope Parameters for Logging to File” on page 3-43.

1 In the Simulink Editor, on the Desktop Real-Time tab, click Prepare > Control Panel.
2 In the External Mode Control Panel, click the Signal & Triggering button.
3 Click the Select all check box. From the Source list, select manual. From the Mode list, select

normal.

The X under Signal selection designates that a signal has been tagged for data collection, and T
designates that the signal has been tagged as a trigger signal.

4 In the Duration field, enter the number of sample points in a data buffer. Enter a Duration
value equal to the total number of sample points that you must collect for a run. For example, if
you have a sample rate of 1000 samples/second and a stop time of 10 seconds, enter:

10001

Set the time axis for Simulink Scope blocks equal to the sample interval (in seconds) times the
number of points in each data buffer. This setting displays one buffer of data across the entire
Simulink Scope plot.

5 Clear the Limit data points to last check box. See “Set Scope Parameters for Logging to
Workspace” on page 3-36.

For more information, see “External Mode Simulation with TCP/IP or Serial Communication”
(Simulink Coder).

 Set Run in Kernel Mode Properties for Logging to File

3-45

6 Click OK.

In the External Signal & Triggering dialog box, click the OK button for the changes you made to
take effect. You do not have to rebuild your real-time application.

See Also

More About
• “Signal Logging to the Workspace” on page 3-35

3 Basic Procedures

3-46

Set Run in Kernel Mode Data Archiving Parameters
You must select the Log data to workspace check box in the Scope parameters dialog box for the
software to save data in the data logging MAT-files.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

The steps in this procedure assume that you have already loaded that model and have completed the
steps in “Set Scope Parameters for Logging to File” on page 3-43 and “Set Run in Kernel Mode
Properties for Logging to File” on page 3-45.

After you create a Simulink model, you can enter the Data Archiving Parameters for data logging to a
file:

1 In the Simulink Editor, on the Desktop Real-Time tab, click Prepare > Control Panel.
2 In the External Mode Control Panel, click the Data Archiving button.
3 Select the Enable archiving check box.
4 In the Directory text box, enter the path to a folder on your disk. For example, if your MATLAB

working folder is named mwd, enter

c:\mwd
5 In the File text box, enter the file name prefix for the data files to be saved. For example, enter:

data

The MATLAB environment names the files data_0.mat, data_1.mat, and so on. The number of
files equals the total sample points. For example, if you set Duration to Total sample
points, then only one file is created.

6 Select the Append file suffix to variable names check box.

 Set Run in Kernel Mode Data Archiving Parameters

3-47

7 Click the OK button.

In the External Signal & Triggering dialog box, click the OK button for the changes you made to
take effect. You do not have to rebuild your real-time application.

See Also

More About
• “Signal Logging to the Workspace” on page 3-35
• “Signal Logging to a File” on page 3-42

3 Basic Procedures

3-48

Plot Signal Data Logged to File
You can use the MATLAB plotting functions for visualization of your non-real-time simulated data or
your real-time executed data.

After running your real-time application and logging data to a file, you can plot the data.

This procedure uses the model sldrtex_model. To open this model, in the MATLAB Command
Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

It assumes that you saved your data to the variable ScopeData.

The steps in this procedure assume that you have already loaded that model and have completed the
steps in “Set Scope Parameters for Logging to File” on page 3-43, “Set Run in Kernel Mode
Properties for Logging to File” on page 3-45, and “Set Run in Kernel Mode Data Archiving
Parameters” on page 3-47.

1 In the Simulink Editor, on the Desktop Real-Time tab, click Run in Real Time.

When the real-time application runs, it creates the ScopeData variable that you configured in
“Set Run in Kernel Mode Properties for Logging to File” on page 3-45 and creates the archive
data files that you configured in “Set Run in Kernel Mode Data Archiving Parameters” on page 3-
47.

2 In the MATLAB Command Window, type:

ScopeData

ScopeData =
 time: [10000x1 double]
 signals: [1x1 struct]
 blockName: 'sldrtex_model/Scope'

3 To list the MAT-files saved to your disk, type:

dir *.mat

data_0.mat
4 To clear the MATLAB workspace and load the scope data, type:

clear
load data_0
who

Your variables are:
ScopeData

5 To plot the first 1000 points, type:

plot(ScopeData_0.time(1:1000), ...
 ScopeData_0.signals.values(1:1000))

The MATLAB environment plots the first 1000 samples over 0.0000–0.9990 seconds.

 Plot Signal Data Logged to File

3-49

See Also

More About
• “Signal Logging to the Workspace” on page 3-35
• “Signal Logging to a File” on page 3-42

3 Basic Procedures

3-50

Tunable Block Parameters and Tunable Global Parameters
To change the behavior of a model, you can tune Simulink Desktop Real-Time block parameters,
provided the parameters are tunable. You can change block parameters via the block parameter
dialog box, Dashboard blocks, and MATLAB language. You can create tunable global parameters by
using MATLAB variables as value expressions.

In Connected IO mode or accelerator mode, Simulink transfers the new values to the model that is
being simulated. In Run in Kernel mode, Simulink transfers the new values to the real-time
application that is running in the kernel mode process.

Procedures to consider when working with tunable parameters include:

1 “Tune Block Parameters by Using the Block Dialog Box” on page 3-54
2 “Tune Block Parameters with Data Navigation” on page 3-57
3 “Sweep MATLAB Variables with MATLAB Scripting” on page 3-62

Tunable Parameters
Simulink Desktop Real-Time defines two kinds of tunable parameters: block parameters and global
parameters.

Tunable Block Parameters

A block parameter is a constant expression that you reference in a Simulink block dialog box or by
using the MATLAB API. Block parameters are tunable when you set the Default parameter
behavior option to Tunable on the Optimization pane. When using the MATLAB API, you identify a
block parameter by the parameter name and the block path in the model hierarchy.

Suppose that you set the Amplitude parameter of a Signal Generator block to a value of 5/2. You
can change the amplitude of the signal generator during simulation by tuning parameter Amplitude
in block Signal Generator.

Tunable Global Parameter

A tunable global parameter is a MATLAB variable that you reference in a Simulink block dialog box.
You can tune a global parameter or object by using a block dialog box, Dashboard blocks, Property
Inspector, Model Explorer, Model Data Editor, or MATLAB language. When using the MATLAB API,
you identify a tunable global parameter by the variable name only.

Suppose that you assign to the Amplitude parameter the variable A with the value 4.57. You can
change the amplitude of the signal generator during simulation by tuning the value of A in the
MATLAB workspace and updating the simulation.

Inlined Parameters
To improve execution efficiency, open the Configuration Parameters dialog box and set the Default
parameter behavior option to Inlined on the Code Generation > Optimization pane.

By default, you cannot tune inlined block parameters. However, you can create a tunable global
variable by referencing a MATLAB variable or Simulink.Parameter object in the block dialog box.
To make the variable or object tunable, apply a storage class other than Auto to it.

 Tunable Block Parameters and Tunable Global Parameters

3-51

For more information about inlined parameters, see “Default parameter behavior” (Simulink Coder).

Tune Parameters by Using Run in Kernel Mode
In Run in Kernel mode, Simulink Desktop Real-Time connects your Simulink model to your real-time
application. The block diagram becomes a user interface for the real-time application. You can change
a parameter value in a block dialog box or replace the value with a MATLAB variable and tune the
variable in the Command Window.

When you change a parameter value in a Simulink model and click OK, Simulink Desktop Real-Time
transfers the data to the real-time application and changes the block parameter. You can change only
the parameters that do not change the model structure. If you modify the structure, you must
recompile the model.

If you change the value of a tunable global parameter, instruct Simulink to transfer the data from the
MATLAB variable to the real-time application by either:

• Pressing Ctrl+D.
• In the Simulink Editor, on the Debug tab, clicking Update Model.

Tune Parameters by Using Hold Updates and Update All Parameters
By using Hold Updates, you can tune multiple parameters and apply all of the tuned parameters at
once, instead of tuning one parameter at a time. This example uses model sldrtex_model. To open
this model, in the MATLAB Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

1 Open model sldrtex_model.
2 In the Simulink Editor, on the Desktop Real-Time tab, click Run in Real Time.
3 On the Desktop Real-Time tab, click Prepare > Hold Updates. The editor remains in Hold

Updates mode until you click Hold Updates again.

To set parameter values, you can set values either by clicking each block or by using the Model
Data Editor in the base workspace.

4 On the Desktop Real-Time tab, Prepare > Signal Table.
5 In the Model Data Editor, click the Parameters tab. Modify parameters values in the Model Data

Editor in the base workspace.
6 On the Desktop Real-Time tab, click Prepare > Update All Parameters.
7 To stop the simulation before it ends, on the Desktop Real-Time tab, click Stop.

Tune Parameters by Using the MATLAB Language
In Simulink Desktop Real-Time, you can use the MATLAB language command set_param to change
the values of block parameters and tunable global parameters. This example uses model
sldrtex_model. To open this model, in the MATLAB Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

3 Basic Procedures

3-52

If you are using a literal block parameter value, you access the parameter by a nonempty block path
and the parameter name. For example, to change the amplitude of the signal generator:

model = 'sldrtex_model';
sgname = [model '/Signal Generator'];
set_param(sgname, 'Amplitude', '4.57')

If you are replacing a block parameter with a tunable global parameter, you access the parameter by
variable name. Suppose that you set Amplitude to the variable A. To change the amplitude of the
signal generator:

A = 4.57
set_param('sldrtex_model','SimulationCommand','update')

See Also

More About
• “Tune Block Parameters by Using the Block Dialog Box” on page 3-54
• “Tune Block Parameters with Data Navigation” on page 3-57
• “Sweep MATLAB Variables with MATLAB Scripting” on page 3-62
• “Water Tank Model with Dashboard” on page 5-5
• “Default parameter behavior” (Simulink Coder)
• “Tune and Experiment with Block Parameter Values”
• “Share and Reuse Block Parameter Values by Creating Variables”
• “How Generated Code Stores Internal Signal, State, and Parameter Data” (Simulink Coder)
• “Preserve Variables in Generated Code” (Simulink Coder)

 Tunable Block Parameters and Tunable Global Parameters

3-53

Tune Block Parameters by Using the Block Dialog Box
After running your real-time application, use the block mask dialog box or Property Inspector to
change parameter values and observe the changes to the signals. In Connected IO mode or
accelerator mode, Simulink transfers the new values to the model that is being simulated. In Run in
Kernel mode, Simulink transfers the new values to the real-time application that is running in the
kernel mode process.

For this example, your goal is to minimize ringing in the transfer function.

This procedure begins with the square-wave transfer function model sldrtex_model. To open this
model, in the MATLAB Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

This model opens in Connected IO mode.

First, install the Simulink Desktop Real-Time kernel and cd to a working folder.

1 Open sldrtex_model.
2 Open the Scope block.
3 In Simulink Editor, on the Desktop Real-Time tab, select Mode > Run in Kernel.
4 On the Desktop Real-Time tab, select Run in Real Time > Stop Time and change the Stop

Time to Inf.
5 On the Desktop Real-Time tab, click Run in Real Time. Simulink builds the real-time

application, connects to the real-time kernel, and starts running the real-time simulation.

6 Open the Transfer Fcn block parameters dialog box.
7 Change Denominator coefficients to [1 180 10000].

3 Basic Procedures

3-54

8 Click Apply.

 Tune Block Parameters by Using the Block Dialog Box

3-55

9 On the Desktop Real-Time tab, click Stop.

See Also

More About
• “Tunable Block Parameters and Tunable Global Parameters” on page 3-51

3 Basic Procedures

3-56

Tune Block Parameters with Data Navigation
You can create tunable global parameters by embedding MATLAB variables in block dialog boxes with
data navigation. You can tune the parameters by changing the variable values during execution. In
Connected IO mode or accelerator mode, Simulink transfers the new values to the model that is
being simulated. In Run in Kernel mode, Simulink transfers the new values to the real-time
application that is running in the kernel mode process.

You can permanently store parameter objects and other external data in a data dictionary.

For this example, your goal is to minimize ringing in the transfer function.

This procedure begins with the square-wave transfer function model sldrtex_model. To open this
model, in the MATLAB Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_model')))

This model opens in Connected IO mode.

Create Parameter Object
1 Change to a working folder by using the cd command.
2 Open sldrtex_model.
3 Open the Transfer Fcn block parameters dialog box.
4 Replace the existing value of Denominator coefficients ([1 70 10000]) with Dmp.

 Tune Block Parameters with Data Navigation

3-57

5 Click the Property Actions button after Dmp and select Dmp: Create.
6 In the Value field, select Simulink.Parameter.
7 In the Location field, select Base Workspace.
8 Click Create.

If the model is already in Run in Kernel mode, the data type defaults to Simulink.Parameter
in the base workspace.

9 In the Simulink.Parameter: Dmp dialog box, in the Value field, enter [1 70 10000].

For the rest of the fields, take the defaults.

3 Basic Procedures

3-58

10 In the Simulink.Parameter: DMP dialog box, click Apply and then click OK.
11 In the Block Parameters: Transfer Fcn dialog box, click OK.

Tune Parameter Object
This procedure continues from the steps in “Create Parameter Object” on page 3-57.

1 In the Simulink Editor, on the Desktop Real-Time tab, select Run in Real Time > Stop Time
and change the Stop Time to Inf.

2 Open the Scope block.
3 Open the Transfer Fcn block parameters dialog box.
4 Click the Property Actions button after Dmp and select Dmp (base workspace) > Open.

Before you start execution, open this dialog box. You cannot open variable Dmp while the real-
time application is running.

5 To start execution, on the Desktop Real-Time tab, click Run in Real Time.

 Tune Block Parameters with Data Navigation

3-59

6 In the Simulink.Parameter: Dmp dialog box, change Value to [1 30 10000] and click Apply.
7 Change the active dialog box by clicking on the model in the Simulink Editor, and then press

Ctrl-D.

8 Change Value to [1 180 10000] and click Apply.
9 Change the active dialog box by clicking on the model in the Simulink Editor, and then press

Ctrl-D.

3 Basic Procedures

3-60

10 On the Desktop Real-Time tab, click Stop.

See Also

More About
• “Share and Reuse Block Parameter Values by Creating Variables”
• “Tunable Block Parameters and Tunable Global Parameters” on page 3-51

 Tune Block Parameters with Data Navigation

3-61

Sweep MATLAB Variables with MATLAB Scripting
You can embed MATLAB variables in the base workspace with MATLAB commands and use MATLAB
language to change their values during execution. In Connected IO mode or accelerator mode,
Simulink transfers the new values to the model that is being simulated. In Run in Kernel mode,
Simulink transfers the new values to the real-time application that is running in the kernel mode
process.

For this example, your goal is to minimize ringing in the transfer function. For improved performance,
you have inlined block parameters. When you inline block parameters, the parameters appear as
nontunable constants in the generated code. To make an individual parameter tunable, use a MATLAB
variable with a storage class other than Auto to store the parameter in memory.

You can permanently store parameter objects and other external data in a data dictionary.

This procedure uses the square-wave transfer function model sldrtex_inlined. To open this
model, in the MATLAB Command Window, type:

open_system(docpath(fullfile(docroot,'toolbox',...
 'sldrt','examples','sldrtex_inlined')))

First, install the Simulink Desktop Real-Time kernel and cd to a working folder.

1 Open sldrtex_inlined and the Scope block.

model = 'sldrtex_inlined';
open_system(fullfile(docroot, 'toolbox', 'sldrt', 'examples', model));
scname = [model '/Scope'];
open_system(scname)

2 In the base workspace, create a parameter object configured to store the parameter as a global
variable.

Dmp = Simulink.Parameter([1 70 10000]);
Dmp.StorageClass='ExportedGlobal';

3 Replace the Transfer Fcn block parameter Denominator with the parameter object.

xfername = [model '/Transfer Fcn'];
set_param(xfername,'Denominator','Dmp');

4 Start execution with the original Dmp variable value.

set_param(model,'StopTime','Inf');
set_param(model,'SimulationMode','external')
set_param(model,'SimulationCommand','connect')
set_param(model,'SimulationCommand','start')

5 Sweep the Dmp variable from 30 to 180 by 30.

for Val = 30 : 30 : 180
 Dmp.Value = [1 Val 10000];
 set_param(model,'SimulationCommand','update')

 pause(2.0)
end

The Scope block shows changes at 30-unit intervals. The figures show key changes.

3 Basic Procedures

3-62

Val == 30

Val == 90

 Sweep MATLAB Variables with MATLAB Scripting

3-63

Val == 180
6 Stop execution.

set_param(model,'SimulationCommand','stop');

See Also

More About
• “Store Data in Dictionary Programmatically”
• “Tunable Block Parameters and Tunable Global Parameters” on page 3-51

3 Basic Procedures

3-64

Boards, Blocks, and Drivers

Simulink Desktop Real-Time software includes driver blocks for more than 200 I/O boards. These
driver blocks connect the physical world to your real-time application.

• “Use I/O Boards” on page 4-2
• “Use I/O Driver Blocks” on page 4-5
• “Use Analog I/O Drivers” on page 4-9
• “Use Vector CAN Drivers” on page 4-12

4

Use I/O Boards
Typically I/O boards are preset from the factory for certain base addresses, voltage levels, and
unipolar or bipolar modes of operation. Boards often include switches or jumpers that allow you to
change many of these initial settings. For information about setting up and installing an I/O board,
read the board manufacturer documentation.

For an online list of I/O boards that Simulink Desktop Real-Time software supports, see
www.mathworks.com/hardware-support/simulink-desktop-real-time.html.

Install and Configure I/O Boards and Drivers
A Simulink Desktop Real-Time model connects to a board by including an I/O driver block. This block
provides an interface to the device driver of the board and the board-specific settings. The device
drivers included with the Simulink Desktop Real-Time software usually provide the same flexibility of
settings offered by the board manufacturer. You can enter I/O board settings by using the I/O Block
Parameters dialog box; setting jumpers and switches on the board; or both. The three types of board
settings are:

• Software selectable — Specify the desired settings in the I/O Block Parameters dialog box. The
driver writes the settings you specify to the board. Examples include A/D gain inputs and selecting
unipolar or bipolar D/A outputs.

• Hardware selectable, software readable — Specify the desired settings by configuring jumpers
or switches on the board. The driver reads the settings you selected and displays them in the I/O
Block Parameters dialog box.

• Hardware selectable, not software readable — Set jumpers or switches on the physical board.
Enter the same settings in the I/O Block Parameters dialog box. These entries must match the
hardware jumpers or switches you set on the board. Use this type of setting when the board
manufacturer does not provide a means for the I/O driver to write or read the board settings.
Examples include base address, D/A gain, and differential or single-ended A/D inputs.

You can configure a Simulink Desktop Real-Time model to use an I/O board whether the board exists
in the computer. However, you cannot run the model until the board is installed with its jumpers and
switches set. Details of installation and configuration depend on the data transfer direction and the
specific board, but are similar. Details for various types of boards and drivers appear later in this
topic.

The following instructions configure the HUMUSOFT® AD512 I/O board for analog input. They
assume that you physically configure and install the board in your computer before you add its driver
to your model. To achieve the results you need, customize the steps.

To install and configure an I/O board and its driver,

1 Install the board in the computer, setting jumpers or switches according to the board
documentation.

2 Open the Simulink Library Browser. In the Simulink Editor, on the Simulation tab, click Library
Browser.

3 Drag an Analog Input I/O driver block into your model from the Simulink Desktop Real-Time
library.

4 Double-click the driver block in the model.

4 Boards, Blocks, and Drivers

4-2

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

5 In the I/O Block Parameters dialog box , click Install new board. From the list that appears,
point to a manufacturer, then select a board type. For example, point to Humusoft, then click
AD512.

The I/O board dialog box opens. The name of this dialog box depends on which I/O board you
selected.

6 If using a PCI bus board, enter the logical device number in the Device order box or check
Auto-detect.

7 Set the other required block parameters using the I/O Block Parameters dialog box.
8 Click Test.

The Simulink Desktop Real-Time kernel tries to connect to the selected board, and if it does so
without an error, displays a message indicating that it found the board.

9 Click OK in the message box, and again in the I/O Block Parameters dialog box.

The I/O Block Parameters dialog box closes, and the parameter values are included in your
Simulink model.

Multiple Boards of Identical Type

When multiple boards of identical type exist, execute the complete installation sequence for each
board as if the boards were of different types. Thus, two identical PCI boards result in two entries in
the list of installed boards. The entries differ only in the logical device number shown in the Device
order box for each board.
Autodetect Multiple Boards

The Autodetect feature cannot be used to locate multiple boards of the same type. Specify their
logical device numbers manually.

Multiple Driver Blocks for One Board

When you have used the I/O Block Parameters dialog box to configure a board driver, you can add
additional I/O driver blocks for the same board. Drag each driver block into the model, open its I/O
Block Parameters dialog box, and select the board from the list of installed boards.
Scope of Driver Block Parameters

I/O driver blocks that use a given board share identical parameters. You specify these parameters
only once, when you first add the board and configure its driver. If you change a parameter in the
driver block for a board, the same change occurs in the other driver blocks connected to that board.

PCI Bus Board
You do not have to set a base address for a PCI board. The plug-and-play feature of the operating
system assigns a PCI slot number and logical device number. You can enter the logical device number
in the Device order box, or you can let the driver determine the device number for you. The Device
order box is in the I/O board dialog box, which you can open from an I/O driver Block Parameters
dialog box.

Before you use a PCI or PCMCIA board, install the drivers supplied by the board manufacturer. The
Simulink Desktop Real-Time software does not use these manufacturer-supplied drivers. However,
they sometimes initiate the plug-and-play recognition of the board. Without these drivers installed,
some boards are invisible to your computer and to the Simulink Desktop Real-Time software.

 Use I/O Boards

4-3

Write PCI Bus Board Drivers

Simulink Desktop Real-Time applications cannot use DLLs and kernel-mode drivers, which are not
suitable for real-time operation. The device drivers supported by the Simulink Desktop Real-Time
software are listed at www.mathworks.com/hardware-support/simulink-desktop-real-time.html. If no
driver is listed for the board that you want to use, you can sometimes write a custom device driver.

A user-written custom device driver must program the board directly at the register level. All
supported Simulink Desktop Real-Time drivers use this technique. The Simulink Desktop Real-Time
software supports I/O mapped board registers for custom device drivers. The Simulink Desktop Real-
Time software does not support memory-mapped board registers for custom device drivers.

To report that you require support for an unsupported board, contact MathWorks Technical Support
at www.mathworks.com/contact_TS.html.

Compact PCI Board
If you use a compact PCI board (PXI®, PXI Express) use a compact PC (industrial PC). Also, install the
operating system, the MATLAB environment, Simulink software, and Simulink Desktop Real-Time
software on the compact PC.

PCMCIA Board
The plug-and-play feature of the operating system assigns a base address automatically. You can enter
this address in the I/O board dialog box, or you can let the driver determine the address for you. You
open the I/O board dialog box from an I/O driver Block Parameters dialog box.

Before you use a PCI or PCMCIA board, install the drivers supplied by the board manufacturer.
Simulink Desktop Real-Time software does not use these manufacturer-supplied drivers. However,
they sometimes initiate the plug-and-play recognition of the board. Without these drivers installed,
some boards are invisible to your computer and to the Simulink Desktop Real-Time software.

See Also

More About
• “Run Confidence Test” on page 2-6

External Websites
• www.mathworks.com/hardware-support/simulink-desktop-real-time.html

4 Boards, Blocks, and Drivers

4-4

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html
https://www.mathworks.com/support/contact_us.html
https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

Use I/O Driver Blocks
Simulink Desktop Real-Time I/O driver blocks allow you to select and connect specific analog
channels and digital lines to your Simulink model through I/O driver blocks. These blocks provide an
interface to your physical I/O boards and your real-time application. They enable the C code created
by Simulink Coder code generation software to map block diagram signals to the corresponding I/O
channels. All I/O blocks support all applicable Simulink data types.

You can have multiple I/O blocks associated with each type of I/O board. For example, you can have
one Analog Input block for channels 1–4 and another block for channels 5–8. Each I/O block in a
model specifies its own block configuration parameters, which apply only to that instance of that
block.

The capability of an I/O driver block is available only if the corresponding I/O hardware device
supports that capability. For example, data-oriented devices like Serial Port and File support packet
and stream I/O blocks. However, data acquisition devices do not support the packet and stream I/O
blocks.

The Simulink Desktop Real-Time Library provides blocks that you can use with supported I/O boards.
You can also create your own I/O blocks to work with Simulink Desktop Real-Time software. See
“Custom I/O Driver Basics” on page A-2 for details.

View Simulink Desktop Real-Time Library
I/O driver blocks are available in the Simulink Desktop Real-Time Library. To view this library from
the MATLAB Command Window, type:

sldrtlib

To view the Simulink Desktop Real-Time Library from a model:

1 In the Simulink Editor, on the Simulation tab, click Library Browser.

The Simulink Library Browser opens. The left pane shows a hierarchy of libraries and categories,
with the Simulink library at the top. The right pane shows the blocks available in the category
selected on the left.

2 In the left column, double-click Simulink Desktop Real-Time.

The Simulink Desktop Real-Time library opens.

You can add an I/O block in the library to your Simulink model by dragging it from the library to the
model. After you add the block, connect it to your model as you would any other block, and provide
block configuration parameter values.

Route Signals from an I/O Block
I/O driver blocks output multiple signals as a vector instead of individual channels or lines. To
connect the individual channels and lines to parts of your Simulink model, separate the vector with a
Demux block.

After you add and configure an I/O driver block in your Simulink model, you can separate and connect
the output signals from the blocks:

 Use I/O Driver Blocks

4-5

1 In the Simulink Editor, on the Simulation tab, click Library Browser.
2 In the Simulink library, click Signal Routing. From the list in the right pane, click and drag

Demux to your Simulink model.
3 Double-click the Demux block. The Block Parameters: Demux dialog box opens. Enter the number

of lines leaving the Demux block. For example, if you entered three channels in the Analog Input
block, enter 3 in the Number of outputs box.

4 Click OK.
5 Connect the Analog Input block to the Demux block input.
6 Connect each of the Demux block output lines to the input of other blocks.
7 On the Debug tab, click Diagnostics > Information Overlays > Nonscalar Lines.
8 On the Debug tab, click Diagnostics > Information Overlays > Signal Dimensions.

Note In this example, inputs 1 and 2 are not connected, but they could be connected to other
Simulink blocks.

Configure Channel Selection
To show how to specify device settings when using both analog and digital signals, this example uses
the Keithley® Metrabyte DAS-1601 I/O board. The following is a specification summary of the
DAS-1601 board:

• Analog input (A/D) — 16 single-ended or 8 differential analog inputs (12-bit), polarity is switch
configured as either unipolar (0–10 volts) or bipolar (± 10 volts). Gain is software configured to 1,
10, 100, and 500.

• Digital input — Four unidirectional digital inputs
• Analog output (D/A) — Two analog outputs (12-bit). Gain is switch configured as 0–5 volts, 0–10

volts, ± 5 volts, or ± 10 volts
• Digital output — Four unidirectional digital outputs
• Base address — Switch configured base address

This section explores different configurations for input signals.

Once an Analog Input block has been placed in the model and the I/O board selected and configured,
you can set up the Analog Input block to handle input signals.

Single analog input — The most basic case is a single analog input signal that is physically
connected to the first analog input channel on the board. In the Block Parameter: Analog Input dialog
box, and the Input channels box, enter:

1 or [1]

The use of brackets is optional for a single input.

Input vector with differential analog — Number the analog channels from channel 1 up to the
maximum number of analog signals supported by the I/O board.

In the case of the DAS-1601, when configured as differential inputs, eight analog channels are
supported. The analog input lines are numbered 1 through 8. The complete input vector is:

4 Boards, Blocks, and Drivers

4-6

[1 2 3 4 5 6 7 8] or [1:8]

If you want to use the first four differential analog channels, enter

[1 2 3 4]

Input vector with single-ended analog — Assume that your DAS-1601 board is configured to be
single-ended analog input. In this case, 16 analog input channels are supported. The complete input
vector is:

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16] or [1:16]

To use the first four single-ended analog input channels, enter:

[1 2 3 4] or [1:4]

The next figure shows the resulting block diagram.

Do not specify more channels than you actually use in your block diagram. Specifying unused
channels results in additional overhead for the processor with A/D or D/A conversions. In this case,
for example, even though some channels are not used in the block diagram, these channels are still
converted.

You could attach terminator blocks to channels 4 and 5 inside your block diagram after passing the
Analog Input block vector in to a Demux block. Adding terminator blocks provides you with graphical
information in your block diagram that clearly indicates which channels you connected and which are
available. The penalty is that even the terminated channels are converted, adding some
computational overhead.

The next figure shows the block implementation.

 Use I/O Driver Blocks

4-7

Depending on the board and the number of channels used, I/O conversion time can affect the
maximum sample rate that can be achieved on your system. Rather than converting unused channels,
specify only the set of channels that your model actually requires.

See Also

More About
• “Run Confidence Test” on page 2-6

4 Boards, Blocks, and Drivers

4-8

Use Analog I/O Drivers
Control systems have unique requirements for I/O devices used with Simulink Desktop Real-Time
applications. For information about writing custom I/O device drivers to work with Simulink Desktop
Real-Time applications, see “Custom I/O Driver Basics” on page A-2.

Configure I/O Driver Characteristics
Simulink Desktop Real-Time applications use I/O boards provided by many hardware vendors. These
boards are often used for data acquisition independently of Simulink Desktop Real-Time software. In
such environments, board manufacturers usually provide their own I/O device drivers for data
acquisition purposes. This use differs significantly from the behavior of drivers provided with
Simulink Desktop Real-Time software.

In data acquisition applications, data is often collected in a burst or frame consisting of many points,
possibly 1,000 or more. The burst of data becomes available once the final point is available. This
approach is not suitable for automatic control applications, because it results in unacceptable latency
for most of the data points.

In contrast, drivers used by Simulink Desktop Real-Time applications capture a single data point at
each sample interval. The software gives considerable effort to minimize the latency between
collecting a data point and using the data in the control system algorithm. Sometimes a board can
specify a maximum sample rate (for data acquisition) higher than the rates achievable by Simulink
Desktop Real-Time applications. For data acquisition, such boards usually acquire data in bursts and
not in the point-by-point fashion required by control systems.

Normalize Scaling for Analog Inputs
Simulink Desktop Real-Time software allows you to normalize I/O signals internal to the block
diagram. Generally, inputs represent real-world values such as angular velocity, position,
temperature, and pressure. This ability to normalize signals allows you to

• Apply your own scale factors
• Work with meaningful units without having to convert from voltages

When using an Analog Input block, you select the range of the external voltages that the board
receives, and you select the block output signal. For example, you could set the voltage range to 0 to
+5 V, and the block output signal as Normalized unipolar, Normalized bipolar, Volts, or
Raw.

If you prefer to work with units of voltage within your Simulink block diagram, you can select Volts.

To apply your own scaling factor, select Normalized unipolar or Normalized bipolar, add a
Gain block, and add an offset to convert the value to a meaningful value in your model.

If you prefer nonrounded integer values from the analog-to-digital conversion process, you can select
Raw.

0 to +5 Volts and Normalized bipolar

From the Input range list, select 0 to +5 V, and from the Block output signal list, select
Normalized bipolar. This example converts a normalized bipolar value to volts, but you could also
easily convert directly to another parameter in your model.

 Use Analog I/O Drivers

4-9

0 to 5 volts --> ([-1 to 1] normalized + 1) * 2.5

In your block diagram, you can convert the normalized value to volts as follows.

0 to +5 V and Normalized unipolar

From the Input range list, select 0 to +5 V, and from the Block output signal list, select
Normalized unipolar. This example converts a normalized unipolar value to volts, but you could
also easily convert directly to another parameter in your model.

0 to 5 volts --> ([0 to 1] normalized * 5.0

In your block diagram, you can convert the normalized value to volts as follows.

-10 to +10 V and Normalized bipolar

From the Input range list, select -10 to +10 V, and from the Block output signal list, select
Normalized bipolar. This example converts a normalized bipolar value to volts, but you could also
easily convert directly to another parameter in your model.

-10 to 10 volts --> [-1 to +1] normalized * 10

In your block diagram, you can convert the normalized value to volts as follows.

-10 to +10 V and Normalized unipolar

From the Input range list, select -10 to +10 V, and from the Block output signal list, select
Normalized unipolar. This example converts a normalized bipolar value to volts, but you could
also easily convert directly to another parameter in your model.

-10 to 10 volts --> ([0 to 1] normalized - 0.5) * 20

4 Boards, Blocks, and Drivers

4-10

In your block diagram, you can convert the normalized value to volts as follows.

Normalize Scaling for Analog Outputs

Analog outputs are treated in an equivalent manner to analog inputs.

For example, assume that the voltage range on the D/A converter is set to 0 to +5 volts and the
Block input signal is selected as Normalized bipolar. With this configuration, a Simulink
signal of amplitude -1 results in an output voltage of 0 volts. Similarly, a Simulink signal of amplitude
+1 results in an output voltage of +5 volts.

For another example, assume that the voltage range on the D/A converter is set to -10 to +10
volts and the Block input signal is selected as Normalized bipolar. With this configuration,
a Simulink signal of amplitude -1 results in an output voltage of -10 volts. Similarly, a Simulink
signal of amplitude +1 results in an output voltage of +10 volts.

As required by your selected voltage range, adjust your signal amplitudes using a Gain block,
Constant block, and Summer block.

See Also
Analog Input | Analog Output

More About
• “Custom I/O Driver Basics” on page A-2
• “Run Confidence Test” on page 2-6

 Use Analog I/O Drivers

4-11

Use Vector CAN Drivers
Before you can use the Vector Informatik CAN devices, you must install the drivers for them.

1 Install the Vector CAN devices. See the Vector Informatik GmbH documentation for installation
instructions for hardware devices such as CANcaseXL, CANboardXL, and CANcardXL, drivers,
and support libraries.

2 Install the Vector XL driver library for the Windows XP, Windows Vista™, or Windows 7 operating
systems. If you do not have this library, download it from the Vector Informatik GmbH website:

www.vector.com
3 Install the driver file.
4 Copy the vxlapi.dll file into the Windows system root\system32 folder.
5 Use the Vector software to assign physical CAN channels to an application. When specifying the

name for the Simulink Desktop Real-Time application, use the name MATLAB.

See Also
Packet Input | Packet Output

More About
• “Run Confidence Test” on page 2-6

4 Boards, Blocks, and Drivers

4-12

https://www.vector.com

Custom I/O Driver Blocks

A

Custom I/O Driver Basics
In this section...
“Supported C Functions” on page A-2
“Unsupported C Functions” on page A-2
“Incompatibility with Operating System API Calls” on page A-3
“I/O Register Access from S-Functions Limitation” on page A-3

You can write custom I/O device drivers to work with Simulink Desktop Real-Time applications.

Note Do not use Analog Input, Analog Output, Digital Input, or Digital Output drivers as starting
points for creating custom device drivers.

Supported C Functions
You can use ANSI® C functions that do not use the operating system in your custom blocks or I/O
drivers. The following includes a partial list of supported functions:

• Console I/O — printf

The printf function sends output to the MATLAB Command Window when it is called from the
real-time application.

• Data conversion — abs, atof, atoi, atol, itoa, labs, ltoa, strtod, strtol, strtoul,
ultoa

• Memory allocation — calloc, free, malloc

Memory allocation is not an operation that can be done in real time. To work with a Simulink
Desktop Real-Time application, memory management must occur before real-time simulation
begins. Simulation switches into real time after mdlStart, so you can allocate memory in
mdlInitializeSizes or mdlStart. You cannot allocate memory in any function after
mdlStart, such as mdlOutputs or mdlUpdate.

• Memory manipulation — _memccpy, memcpy, memchr, memcmp, _memicmp, memmove, memset
• Character string manipulation — strcat, strchr, strcmp, strcpy, strcspn, _strdup,

_stricmp, strlen, _strlwr, strncat, strncmp, strncpy, _strnset, strpbrk, strrchr,
_strrev, _strset, strspn, strstr, strtok, strupr

• Mathematical — acos, asin, atan, atan2, ceil, cos, cosh, div, exp, fabs, floor, fmod,
frexp, ldexp, ldiv, log, log10, max, min, modf, pow, rand, sin, sinh, sqrt, srand, tan,
tanh, uldiv

• Character class tests and conversion — isalnum, isalpha, _isascii, iscntrl, isdigit,
isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, isxupper, isxlower,
_toascii, tolower, toupper

• Searching and sorting — bsearch, qsort
• Dummy functions — exit, fprintf

Unsupported C Functions
If you create your own custom I/O driver blocks, use only C functions that Simulink Desktop Real-
Time supports. Simulink Desktop Real-Time does not support functions that use the operating system.

A Custom I/O Driver Basics

A-2

This category includes functions from vendor-supplied driver libraries for the operating system,
which are also not supported.

The following list includes many, but not all, of the unsupported functions:

• File I/O — fopen, freopen, fclose, fread, fwrite, fputs, fputc, fgets, fgetc, gets,
getc, getchar, puts, putc, putchar, fflush, setbuf, setvbuf

• Console I/O — fprintf, sprintf, vfprintf, vprintf, vsprintf, fscanf, scanf, sscanf
• Process management — spawn, exit, abort, atexit
• Signals and exceptions — signal, longimp, raise
• Time functions — clock, time, difftime, asctime, ctime, difftime, gmtime, localtime,

mktime, strftime
• Operating system API functions — No operating system API functions, such as Win64

functions, are supported .

Incompatibility with Operating System API Calls
The Simulink Desktop Real-Time kernel intercepts the interrupt from the system clock. It then
reprograms the system clock to operate at a higher frequency for running your real-time application.
At the original clock frequency, it sends an interrupt to the operating system to allow software that
uses the operating system API to run.

As a result, software that uses the operating system API, such as Win64 functions, cannot be
executed as a component of your real-time application. Software you use to write I/O drivers
must not make calls to the operating system API.

I/O Register Access from S-Functions Limitation
Operating system drivers can access I/O registers only from the real-time kernel and not from the
Simulink software. To prevent drivers from attempting to access I/O registers from Simulink S-
functions, enter code fragments like the following:

#ifndef MATLAB_MEX_FILE
/* we are in real-time kernel, do board I/O */
#else
/* we are in Simulink, don't do board I/O */
#endif

 Custom I/O Driver Basics

A-3

Simulink Desktop Real-Time Examples

5

Real-Time Van der Pol Simulation
This example shows a real-time version of the Simulink® Van der Pol simulation model.

This model does not need any external signals, so it does not need any data acquisition hardware or
driver. The model is useful for the first time that you work with Simulink Desktop Real-Time™
because you do not have to configure I/O hardware.

Run Model in Connected IO Mode

1 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

2 To start the real-time execution, click Run in Real-Time.
3 Observe any missed ticks on the Missed Ticks scope.

Run Model in Run in Kernel Mode

1 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

2 To start the real-time execution, click Run in Real Time. The model builds, connects to Simulink
in Run in Kernel mode, and starts.

3 Observe that Missed Ticks is zero.

Open the Model

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_vdp'));

5 Simulink Desktop Real-Time Examples

5-2

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up the Model

clear
close all
bdclose all

 Real-Time Van der Pol Simulation

5-3

See Also

• “Create a Real-Time Application” on page 3-4
• “Prepare for Real-Time Execution” on page 3-2

5 Simulink Desktop Real-Time Examples

5-4

Water Tank Model with Dashboard
This example shows a real-time model of a water tank controlled by dashboard controls. You can
change the inputs to the plant by using the dashboard knobs and observe the response on the gauges.

Run Model in Connected IO Mode

1 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

2 To start the real-time execution, click Run in Real-Time.
3 Change the input flow and output valve values by using the dashboard controls and observe the

results on the dashboard gauges.

Run Model in Run in Kernel Mode

1 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

2 To start the real-time execution, click Run in Real-Time. The model builds, connects to Simulink
in Run in Kernel mode, and starts.

3 Change the input flow and output valve values by using the dashboard controls and observe the
results on the dashboard gauges.

Open the Model

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_dashboard'));

 Water Tank Model with Dashboard

5-5

Open Subsystem and See Signals Marked for Signal Logging

1 Double click the Tank dynamics subsystem.
2 Observe the Overflow, Water level, and Output flow signals are marked for signal logging

with the Simulation Data Inspector.

5 Simulink Desktop Real-Time Examples

5-6

Run the Model and View Logged Signals

1 Click the Run in Real Time button.
2 Click the Data Inspector button.
3 Observe signal logging in the Simulation Data Inspector.

Clean Up the Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Inspect Simulink® Desktop Real-Time™ Signals with Simulation Data Inspector” on page 3-32

 Water Tank Model with Dashboard

5-7

Real-Time Signal Generator
This example shows how to produce an analog output signal by using Simulink Desktop Real-Time™.
Because analog output can require less configuration and is easier to connect than analog input, this
model is useful for working with data acquisition boards. You can verify the presence of the
generated signal, for example by connecting an oscilloscope to the analog output pins of your data
acquisition board.

Note: To run this model, you must have a data acquisition board connected to your computer.

Run Model in Connected IO Mode

1 Open the Analog Output block and select your data acquisition board. If there is no board
installed, install it by clicking the Install new board button.

2 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

3 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode

1 Open the Analog Output block and select your data acquisition board. If there's no board
installed, install it by clicking the Install new board button.

2 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

3 To start the real-time execution, click Run in Real Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_siggen'));

5 Simulink Desktop Real-Time Examples

5-8

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up the Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Real-Time Controller” on page 5-10

 Real-Time Signal Generator

5-9

Real-Time Controller
This example shows how to build a simple closed-loop real-time controller by using Simulink Desktop
Real-Time™. The output of the controlled plant is connected to the analog input of your data
acquisition board. This signal is subtracted from the set point value generated by the signal generator
and processed by a PID controller. The output of the controller drives the input of the plant by using
the analog output of your data acquisition board.

This model is a simplified version of the controller used for the http://www.humusoft.cz/
produkty/models/ce152 CE152 Magnetic Levitation Model.

Note: To run this model, you must have a data acquisition board connected to your computer.

Run Model in Connected IO Mode
1 Open the Analog Input and Analog Output blocks and select your data acquisition board. If there

is no board installed, install it by clicking the Install new board button.
2 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >

Connected IO.
3 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode
1 Open the Analog Input and Analog Output blocks and select your data acquisition board. If there

is no board installed, install it by clicking the Install new board button.
2 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run

in Kernel.
3 To start the real-time execution, click Run in Real Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_controller'));

5 Simulink Desktop Real-Time Examples

5-10

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Real-Time Filter” on page 5-12

 Real-Time Controller

5-11

Real-Time Filter
This example shows a real-time filter built using DSP System Toolbox™ and Simulink Desktop Real-
Time™. The unfiltered signal is acquired by the analog input, passed through a filter designed by DSP
System Toolbox and finally sent to analog output. Both the unfiltered and filtered signals are shown in
real-time using the Scope block.

Note: To run this model, you must have a data acquisition board connected to your computer. This
model requires DSP System Toolbox.

Run Model in Connected IO Mode

1 Open the Analog Input and Analog Output blocks and select your data acquisition board. If there
is no board installed, install it by clicking the Install new board button.

2 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

3 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode

1 Open the Analog Input and Analog Output blocks and select your data acquisition board. If there
is no board installed, install it by clicking the Install new board button.

2 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

3 To start the real-time execution, click Run in Real Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_filter'));

5 Simulink Desktop Real-Time Examples

5-12

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Real-Time Controller” on page 5-10

 Real-Time Filter

5-13

Frequency Measurement
This example shows how to measure input signal frequency by using Simulink Desktop Real-Time™.
The measured signal is connected to the counter input of your data acquisition board. Counter Input
block is configured to reset counter each sample-hit after counter read. Dividing counter value by
sample time gives input signal frequency.

Note: To run this model, you must have a data acquisition board with counter input connected to
your computer.

Run Model in Connected IO Mode

1 Open the Counter Input block and select your data acquisition board. If there is no board
installed, install it by clicking the Install new board button.

2 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

3 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode

1 Open the Counter Input block and select your data acquisition board. If there is no board
installed, install it by clicking the Install new board button.

2 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

3 To start the real-time execution, click Run in Real-Time.

The model builds, connects to Run in Kernel mode, and starts.

Open the Model

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_counter'));

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

5 Simulink Desktop Real-Time Examples

5-14

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “PWM Frequency and Duty Measurement” on page 5-16

 Frequency Measurement

5-15

PWM Frequency and Duty Measurement
This example shows how to measure PWM signal frequency and duty using Simulink Desktop Real-
Time™. The measured signal is connected to gate pins of two counter inputs of your data acquisition
board. The first Counter Input block is configured to measure signal duty by measuring the time
between rising and falling edge of the signal. The other Counter Input block is configured to measure
signal period by measuring the time between two rising edges of the signal. Both the counters use
internal on-board clock as the clock source. PWM frequency and duty are then computed based on
these values.

Note: To run this model, you must have a supported data acquisition board connected to your
computer.

Run Model in Connected IO Mode

This model is pre-set to be used with the National Instruments PCIe-6323 board. You can use it with
any board from the PCIe-63xx series. To change the board, open both the Counter Input blocks and
select your data acquisition board. You may need to register the board by clicking the Install new
board button first.

Alternatively, you can also use any board from the PCI-62xx series or the PCI-60xx series. For these
boards, please change the Counter base frequency from 100 MHz to 80 MHz or 20 MHz, respectively.

1 Connect your PWM signal to both CTR 0 GATE and CTR 1 GATE input pins. To measure both
PWM frequency and duty, two counter channels are required.

2 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

3 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode

This model is pre-set to be used with the National Instruments PCIe-6323 board. You can use it with
any board from the PCIe-63xx series. To change the board, open both the Counter Input blocks and
select your data acquisition board. You may need to register the board by clicking the Install new
board button first.

Alternatively, you can also use any board from the PCI-62xx series or the PCI-60xx series. For these
boards, please change the Counter base frequency from 100 MHz to 80 MHz or 20 MHz, respectively.

1 Connect your PWM signal to both CTR 0 GATE and CTR 1 GATE input pins. To measure both
PWM frequency and duty, two counter channels are required.

2 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

3 To start the real-time execution, click Run in Real Time.

The model builds, connects to Run in Kernel mode, and starts.

Open the Model

warning('off','sldrt:blkgui:boardnotonlist');
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_pwmmeasure'));

5 Simulink Desktop Real-Time Examples

5-16

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Frequency Measurement” on page 5-14

 PWM Frequency and Duty Measurement

5-17

Packet Input/Output
This example shows how to transfer data through UDP communication protocol using binary
encoding. The model sends data within one computer, from one UDP port to another. You can modify
the model to communicate between two computers by splitting this model into its send and receive
parts and running the models on two computers. The yellow blocks are used to send the data, the
blue blocks are used to receive the data. Then, please enter the host names or IP addresses of the two
computers into the appropriate fields in the Board Setup dialog.

Run Model in Normal Mode

1 To switch to normal mode if needed, on the Simulation tab, select Normal mode.
2 To start the real-time execution, on the Simulation tab, click Run.

Run Model in External Mode

To start the real-time execution in external mode, on the Desktop Real-Time tab, click Run in Real-
Time. The model builds, connect to external mode, and starts.

Open the Model

These commands open the model and suppress warning about board not installed.

w = warning('off', 'sldrt:blkgui:boardnotonlist');
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_packetio'));
warning(w);

5 Simulink Desktop Real-Time Examples

5-18

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

 Packet Input/Output

5-19

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Stream Input/Output” on page 5-21

5 Simulink Desktop Real-Time Examples

5-20

Stream Input/Output
This example shows how to transfer data through TCP communication protocol by using ASCII
encoding. The model sends data within one computer, from one TCP port to another. You can modify
the model to communicate between two computers by splitting this model into its send and receive
parts and running the models on two computers. The yellow blocks are used to send the data, the
blue blocks are used to receive the data. Then, please enter the host names or IP addresses of the two
computers into the appropriate fields in the Board Setup dialog.

Run Model in Normal Mode

1 To switch to normal mode if needed, on the Simulation tab, select Normal mode.
2 To start the real-time execution, on the Simulation tab, click Run.

Run Model in External Mode

To start the real-time execution in external mode, on the Desktop Real-Time tab, click Run in Real-
Time. The model builds, connects to external mode, and starts.

Open the Model

These commands open the model and suppressing warning about board not installed.

w = warning('off', 'sldrt:blkgui:boardnotonlist');
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_streamio'));
warning(w);

 Stream Input/Output

5-21

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

5 Simulink Desktop Real-Time Examples

5-22

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Packet Input/Output” on page 5-18

 Stream Input/Output

5-23

CAN Input/Output
This example shows how to transfer data through CAN bus. The model sends data within one
computer, from one CAN channel to another. The two CAN channels can be either virtual channels or
physical channels on a dual-channel CAN device. Two different CAN messages using different
message identifiers are being transmitted. You can modify the model to communicate between two
computers by splitting this model into its send and receive parts and running the models on two
computers. The yellow blocks are used to send the data, the blue blocks are used to receive the data.

Note: This model runs on Microsoft Windows only.

Run Model in Connected IO Mode

1 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

2 To start the real-time execution, on the Simulation tab, click Run.

Run Model in Run in Kernel Mode

1 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

2 To start the real-time execution, click Run in Real Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model

These commands open the model and suppress warning about board not installed.

w = warning('off', 'sldrt:blkgui:boardnotonlist');
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_canio'));
warning(w);

5 Simulink Desktop Real-Time Examples

5-24

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

 CAN Input/Output

5-25

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “CAN Input/Output with Vehicle Network Toolbox” on page 5-27

5 Simulink Desktop Real-Time Examples

5-26

CAN Input/Output with Vehicle Network Toolbox
This example shows how to transfer data through CAN bus, utilizing the CAN_MESSAGE data type
and the CAN Pack and CAN Unpack blocks available in Vehicle Network Toolbox™ block library. The
CAN_MESSAGE data type can be directly processed by Simulink Desktop Real-Time™ blocks.

The example also shows the difference in data transfer capability between the CAN and CAN FD
protocols. The CAN protocol maximum data size is 8 bytes. This protocol is able to send eight double-
precision values, the values need to be scaled and converted to the uint8 data type, losing some
precision. The CAN FD protocol maximum data size is 64 bytes. This protocol is capable of
transferring eight double-precision values in their native format without any conversion and precision
loss.

The model sends data within one computer, from one virtual CAN channel to another. The two CAN
channels can be either virtual channels or physical channels on a dual-channel CAN device. You can
modify the model to communicate between two computers by splitting this model into its send and
receive parts and running the models on two computers.

The yellow blocks are used to send the data. The blue blocks are used to receive the data.

Note: This model runs on Microsoft Windows only.

Run Model in Connected IO Mode

1 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

2 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode

1 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

2 To start the real-time execution, click Run in Real Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model

These commands open the model and suppress warning about board not installed.

w = warning('off', 'sldrt:blkgui:boardnotonlist');
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_canmessage'));
warning(w);

 CAN Input/Output with Vehicle Network Toolbox

5-27

5 Simulink Desktop Real-Time Examples

5-28

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “CAN Input/Output” on page 5-24

 CAN Input/Output with Vehicle Network Toolbox

5-29

Execution Time Measurement and Block Profiling
This example shows how to analyze model execution performance in Simulink Desktop Real-Time™.
The example is a multirate multi-tasking model that performs a time-intensive operation of matrix
multiplication and finding the minimum in the resulting matrix product. This is being done for two
different matrix sizes at two different sample rates.

The task-level performance information is returned by the Execution Time block. The first output port
shows the total time of execution of each base rate step of the entire model. The second output port
shows time of execution of each task.

To further refine the performance analysis, one of the two tasks is instrumented to obtain block-level
information. The added Timestamp blocks capture the timestamps of input and output signals of
blocks that are to be investigated. By subtracting the timestamps for input and output signals,
execution times of the blocks are obtained.

Note: This example must be run in Run in Kernel Mode and requires Simulink Coder™.

1 To switch to Run in Kernel mode, on the *Desktop Real-Time tab, select Mode > Run in
Kernel.

2 To start the real-time execution, click Run in Real Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_profiling'));

5 Simulink Desktop Real-Time Examples

5-30

 Execution Time Measurement and Block Profiling

5-31

5 Simulink Desktop Real-Time Examples

5-32

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2
• “Inspect Simulink® Desktop Real-Time™ Signals with Simulation Data Inspector” on page 3-32

 Execution Time Measurement and Block Profiling

5-33

Apply Simulink Desktop Real-Time Model Templates to Create
Real-Time Models

Starting from the model template for Simulink Desktop Real-Time™ provides a new model that has
configuration parameters set up for building a real-time application. This example shows how to use
the Simulink Desktop Real-Time template for a new Simulink model that is configured for Connected
IO mode or Run in Kernel mode.

To see the Simulink Desktop Real-Time commands for each operation in this example, view the
example code.

Create a Simulink Desktop Real-Time Model from Template

To create this model from the Simulink start page, in the Command Window, type:

simulink

To create a model that is configured for Connected IO mode, select the Simulink Desktop Real-Time
Connected IO mode template from the start page, and create the exampleSldrtAppConnectedIO
model. Or, in the Command Window, use the Simulink.createFromTemplate command.

To create a model that is configured for Run in Kernel mode, select the Simulink Desktop Real-Time
Run in Kernel mode template from the start page, and create the exampleSldrtAppRunInKernel
model. Or, in the Command Window, use the Simulink.createFromTemplate command.

5 Simulink Desktop Real-Time Examples

5-34

Tips for Maximum Performance

These are some tips to help you get the most performance from the models that you create from
these model templates.

For model that is configured for Connected IO mode:

• Both fixed-step and variable-step solvers can be used in Connected IO mode.
• All I/O blocks perform real-time synchronization. Use the Real-Time Synchronization block only if

no I/O block is used.
• Use a single block that reads or writes all channels of given type, rather than multiple blocks for

one channel each.

For model that is configured for Run in Kernel mode:

• It is not necessary to use the Real-Time Synchronization block in Run in Kernel mode. The block
performs no operation.

• It is not useful to use the Missed Ticks port in Run in Kernel mode. The port always outputs zero.
• Use a single block that reads or writes all channels of given type, rather than multiple blocks for

one channel each.

More Information

• “Create a Real-Time Application” on page 3-4
• “Real-Time Execution in Connected IO Mode” on page 1-3
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

 Apply Simulink Desktop Real-Time Model Templates to Create Real-Time Models

5-35

UDP String Data and Message Handling
This example shows how to transfer text data by using the UDP communication protocol and shows
how to store the incoming messages in a FIFO queue.

The model receives randomly distributed text messages containing textual color description by using
the Stream Input block. The model converts the textual color description into corresponding numeric
color code. A FIFO queue stores the color codes. The model sequentially displays the received colors
at a sample rate that is perceptible to the human eye.

The Message generator subsystem simulates a remote device by randomly sending color text
messages to the model. These messages provide input data for the example.

Run Model in Connected IO Mode

1 To switch to Connected IO mode if needed, on the Desktop Real-Time tab, select Mode >
Connected IO.

2 To start the real-time execution, click Run in Real-Time.

Run Model in Run in Kernel Mode

1 To switch to Run in Kernel mode if needed, on the Desktop Real-Time tab, select Mode > Run
in Kernel.

2 To start the real-time execution, click Run in Real-Time.

The model builds, connects to Simulink in Run in Kernel mode, and starts.

Open the Model

These commands open the model and suppress warning about board not installed.

w = warning('off', 'sldrt:blkgui:boardnotonlist');
open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_stringmessage'));
warning(w);

5 Simulink Desktop Real-Time Examples

5-36

Close Open Scopes

close_system(find_system(gcs ,'BlockType', 'Scope'));

Clean Up Model

clear
close all
bdclose all

See Also

• “Prepare for Real-Time Execution” on page 3-2

 UDP String Data and Message Handling

5-37

Sync Models by Using Arduino Connected I/O Board
This example shows how to synchronize models using an Arduino Connected I/O board with real time
and using Simulink Desktop Real-Time running in Connected IO mode.

The model sends software-generated pulse-width modulation signal to Arduino pin 13 where it can be
observed by an oscilloscope or visually by observing the LED connected to pin 13. The duty of the
signal can be controlled by the attached knob control.

Open the Model

Open the model sldrtex_arduino. In the MATLAB Command Window, type:

open_system(fullfile(matlabroot,'toolbox','sldrt','sldrtexamples','sldrtex_arduino'));

5 Simulink Desktop Real-Time Examples

5-38

Run the Model

To run this model, use this setup:

1 The model is currently configured for Arduino Mega 2560. If necessary, change the configuration
to match your Arduino model.

2 To change to Connected IO mode (required), on the Desktop Real-Time tab, select Mode >
Connected IO.

3 To start real-time execution, click Run in Real-Time.

Note: This model requires Simulink Support Package for Arduino Hardware.

 Sync Models by Using Arduino Connected I/O Board

5-39

Troubleshooting

Solutions have been worked out for some common errors and problems that can occur when you are
using Simulink Desktop Real-Time software. For more information, see Simulink Desktop Real-Time
— MATLAB Answers.

• “Troubleshoot Missing Desktop Real-Time Tab” on page 6-2
• “Troubleshoot sldrtext Incorrect Version Error” on page 6-3
• “Troubleshoot Delayed or Missing Scope Output” on page 6-4
• “Troubleshoot Signals Not Plotted in Scope Blocks” on page 6-5
• “Troubleshoot Vendor Software Missing Issues” on page 6-7
• “Troubleshoot Builds of Referenced Models” on page 6-8
• “Troubleshoot Slow or Halted Simulation on Windows” on page 6-9
• “Troubleshoot C++ Standard Template Library (STL) Compilation Errors for Real-Time

Application” on page 6-10

6

https://www.mathworks.com/support/search.html?q=sldrt&fq=asset_type_name:answer&page=1
https://www.mathworks.com/support/search.html?q=sldrt&fq=asset_type_name:answer&page=1

Troubleshoot Missing Desktop Real-Time Tab
Where is the Desktop Real-Time tab? I do not see this tab in the Simulink editor.

What This Issue Means
From the model configuration, the Simulink editor determines which tabs to display. The editor
displays the Desktop Real-Time tab for models that are configured for Simulink Desktop Real-Time.

Try This Workaround
To configure your model for Simulink Desktop Real-Time, in Simulink Editor, from the Apps tab, click
Desktop Real-Time.

This operation changes the code generation target to sldrt.tlc for the model. After changing the
configuration, the Simulink editor displays the Desktop Real-Time tab for the model.

See Also

More About
• “Configure a Model for Simulink Desktop Real-Time” on page 3-10

6 Troubleshooting

6-2

Troubleshoot sldrtext Incorrect Version Error
When I try to run a Simulink Desktop Real-Time model in external mode, the Simulation Errors dialog
box displays:

Error occurred while executing External Mode MEX-file 'sldrtext': Incorrect version

What This Issue Means
This message indicates that the Simulink Desktop Real-Time kernel could be out-of-date.

Try This Workaround
To check the real-time kernel version, in the Command Window, type rtwho. If the real-time kernel is
out-of-date, you see a message similar to:

Incorrect kernel version is installed.
Use 'sldrtkernel -setup' to install the correct version.

To resolve this issue, install the current version of the real-time kernel. :

See Also

More About
• “Install Real-Time Kernel” on page 2-4

 Troubleshoot sldrtext Incorrect Version Error

6-3

Troubleshoot Delayed or Missing Scope Output
When simulating a Simulink Desktop Real-Time model in external mode run, I notice slow updates of
Scope blocks or failure to plot data in Scope blocks.

What This Issue Means
Slow updates of Scope blocks or failure to plot data in Scope blocks could indicate that the real-time
application sample time is near the lower threshold for the computer and I/O hardware.

Note The sample time is set in the Fixed step size (fundamental sample time) field in the
Configuration Parameters Solver pane. The Fixed step size field appears only when Type is set to
Fixed-step.

Plotting data has a lower priority than executing the application. A small sample time allows the
application to run but can leave insufficient resources for plotting. If the sample time is so small that
the application itself cannot run, an error message is displayed and real-time execution is terminated.

Try This Workaround
To check the sample time, select a larger sample time for your application. Change the sample time of
any I/O drivers to be the same as the new application sample time or to an integer multiple of that
time. Then rebuild the model, connect to the target, and restart the real-time application.

As required, iterate changing the application sample time until scope output appears. For example,
start with a sample time of 0.01 seconds, and confirm that your system runs and plots are displayed.
Then decrease the sample time until you can display scopes and meet your accuracy and response
time requirements. After changing the application sample time, update the I/O driver sample time
and rebuild the application .

See Also

More About
• “Prepare for Real-Time Execution” on page 3-2
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

6 Troubleshooting

6-4

Troubleshoot Signals Not Plotted in Scope Blocks
When I simulate a Simulink Desktop Real-Time model in Run in Kernel mode, I do not see signals
plotted in the Scope blocks.

What This Issue Means
Missing signal plots in Scope blocks during simulation could indicate a model configuration issue or a
sample rate issue.

Try This Workaround
To check whether there is a model configuration issue or a sample rate issue, try these workarounds.

Check the Model Configuration

Before you execute your application in Run in Kernel mode, you must specify data to plot in a
Simulink Scope block.

1 Open the model.
2 In the Simulink Editor, on the Desktop Real Time tab, click Prepare > Control Panel.
3 In the External Mode Control Panel, click Signals & Triggering and select one or more signals

for capture (designated with X) in the External Signal & Triggering dialog box.
4 Set Duration * Fixed Step Size close to or less than the X range in the Scope block.
5 Select required mode (one-shot or normal).
6 Configure signal levels to allow triggering.
7 Set the Y range on Simulink Scope block axes large enough to span the signal amplitude.
8 Set the X range large enough to provide required time resolution.
9 Set Arm when connect to target in the External Signal & Triggering dialog box or Arm

Trigger in the External Mode Control Panel.
10 On the Desktop Real Time tab, click Mode > Run in Kernel.
11 On the Desktop Real Time tab, click Run in Real Time.

Simulink builds the real-time application, connects to the kernel, and starts the real-time
simulation. The Scope displays the signals.

Run an Example Model or Reduce the Sample Rate

Try running one of the example models or run your model at a slower sample rate.

If you can see signals plotted for an example model or for your model at a slower sample rate, your
system cannot transfer data back to MATLAB for plotting in the CPU time available between sample
intervals for your model and the original sample rate.

Select the fastest sample rate that allows your model to run and plot signals.

 Troubleshoot Signals Not Plotted in Scope Blocks

6-5

See Also

More About
• “Prepare for Real-Time Execution” on page 3-2
• “Real-Time Execution in Run in Kernel Mode” on page 1-5

6 Troubleshooting

6-6

Troubleshoot Vendor Software Missing Issues
I use the Simulink Desktop Real-Time software drivers for my I/O modules. I see warning and error
messages about missing software during model builds.

What This Issue Means
Simulink Desktop Real-Time provides dedicated drivers for I/O modules. Some vendors can require
the installation of vendor-specific software, even if you do not use their software. A warning or error
message during the build or during execution can indicate this software installation requirement. Or,
the I/O module fails to initialize.

Try This Workaround
To resolve warning or error messages issue from third-party vendor software, refer to the vendor
documentation for vendor-specific requirements. If the hardware requires the installation of vendor
software, install the vendor software on your computer.

See Also

More About
• “Software Components” on page 2-2

External Websites
• Hardware Support from Simulink Desktop Real-Time

 Troubleshoot Vendor Software Missing Issues

6-7

https://www.mathworks.com/hardware-support/simulink-desktop-real-time.html

Troubleshoot Builds of Referenced Models
During referenced model builds, I get warning and error messages for many Simulink Desktop Real-
Time blocks.

What This Issue Means
Simulink Desktop Real-Time supports a limited list of blocks in referenced models for model builds.

Try This Workaround
These blocks are not supported in referenced models. Place these blocks at the top level of the model.

• Analog Input
• Analog Output
• Counter Input
• Encoder Input
• Frequency Output
• Digital Input
• Digital Output
• Packet Input
• Packet Output
• Stream Input
• Stream Output
• Other Input
• Other Output
• Real-Time Sync

These blocks are supported in referenced models.

• Execution Time
• Timestamp

See Also

More About
• “Prepare for Real-Time Execution” on page 3-2

6 Troubleshooting

6-8

Troubleshoot Slow or Halted Simulation on Windows
I see slow or halted simulation on my Windows system. Simulation fails with an error message:

Warning: The "Real-Time Synchronization" block has timed out while
trying to synchronize to real-time kernel.

What This Issue Means
This message indicates that the system could not load and start the kernel.

Try This Workaround
To identify the cause of the issue, in the Command Window, type:

!systeminfo

Examine the system information from these commands. Check whether the last line is:

Hyper-V Requirements:
 A hypervisor has been detected. Features required for Hyper-V will not be displayed.

The Windows Hyper-V feature is not compatible with the Simulink Desktop Real-Time kernel. You
cannot use virtualization with the real-time kernel. To disable the Hyper-V feature:

1 From the Start menu, search for Control Panel.
2 In the Control Panel, select Programs and Features.
3 Select Turn Windows features on or off.
4 Clear the box for the Hyper-V feature.

This operation begins the uninstall process. After it completes, you are prompted to restart the
computer.

See Also

More About
• “Software Components” on page 2-2

External Websites
• System Requirements

 Troubleshoot Slow or Halted Simulation on Windows

6-9

https://en.wikipedia.org/wiki/Hyper-V
https://www.mathworks.com/products/availability.html#WT

Troubleshoot C++ Standard Template Library (STL)
Compilation Errors for Real-Time Application

To include a C++ project, I wrap the source into an S-Function block that is compatible with the
Simulink Desktop Real-Time code generation target, sldrt.tlc. The C++ project uses the C++11
Standard Template Library (STL) interfaces, such as std::vector, std::stack, and
std::complex. I can successfully compile the project in Connected IO mode. But, when I compile
in Run in Kernel mode, I get compilation errors such as:

<complex> file not found
<vector> file not found

What This Issue Means
The compiler generates these errors because the C++ standard template library is not compatible
with real-time code.

In real-time code, there is a requirement to always finish a single time step on time, before the next
one is due to start. This requirement produces time-deterministic behavior for the real-time code and
produces more or less fixed execution time.

By comparison, the C++ standard template library frequently uses features that are not time-
deterministic. The most notable examples are dynamic memory allocation and exceptions. While
dynamic memory allocation is (with some limitations) supported by the real-time kernel in a real-time
deterministic way, exceptions are not. So, it is not possible to use code that can throw exceptions.

This issue causes most of the STL headers to be unavailable with the Simulink Desktop Real-Time
code generation target. These interfaces throw exceptions. You cannot run code that uses the STL in
the real-time kernel.

Try This Workaround
To eliminate the compiler errors, modify your project not to use the C++ standard template library.

If you are not able to modify your project not to use the C++ standard template library, you can use
the Simulink Desktop Real-Time code generation target in Connected IO mode.

For Connected IO mode, compile the S-function as you would for Simulink. Then, run the model. The
real-time requirements cannot be enforced, but the real-time misses are reported as they occur.

6 Troubleshooting

6-10

	Getting Started
	Simulink Desktop Real-Time Product Description
	Key Features

	Real-Time Execution in Connected IO Mode
	Real-Time Execution in Run in Kernel Mode

	Installation and Configuration
	Software Components
	MATLAB Environment
	Simulink Software
	Simulink Coder Software
	Known Limitations

	Install Real-Time Kernel
	Install the Kernel Using MATLAB
	Uninstall the Kernel

	Run Confidence Test
	Run the Model sldrtex_vdp
	Display Status Information
	Examples Library

	Basic Procedures
	Prepare for Real-Time Execution
	Prepare I/O Devices
	Prepare Real-Time Application

	Create a Real-Time Application
	Create a Simulink Model
	File System I/O
	Configure a Model for Simulink Desktop Real-Time
	Specify a Default Configuration Set
	Enter Configuration Parameters Manually
	Enter Scope Parameters for Signal Tracing

	Simulate Model in Connected IO Mode
	Set Run in Kernel Mode Code Generation Parameters
	Prepare Run in Kernel Mode Application
	Set Run in Kernel Mode (External Mode) Scope Parameters
	Execute Real-Time Application in Run in Kernel Mode by Using Run in Real Time
	Execute Real-Time Application in Run in Kernel Mode by Using Step by Step Commands
	Execute Real-Time Application with S-Functions in Run in Kernel Mode
	Run Application from MATLAB Command Line
	Connected IO Mode (Normal Mode)
	Accelerator Mode
	Run in Kernel Mode (External Mode)

	Inspect Simulink® Desktop Real-Time™ Signals with Simulation Data Inspector
	Signal Logging to the Workspace
	Set Scope Parameters for Logging to Workspace
	Set Run in Kernel Mode Properties for Logging to Workspace
	Plot Signal Data Logged to Workspace
	Signal Logging to a File
	Set Scope Parameters for Logging to File
	Set Run in Kernel Mode Properties for Logging to File
	Set Run in Kernel Mode Data Archiving Parameters
	Plot Signal Data Logged to File
	Tunable Block Parameters and Tunable Global Parameters
	Tunable Parameters
	Inlined Parameters
	Tune Parameters by Using Run in Kernel Mode
	Tune Parameters by Using Hold Updates and Update All Parameters
	Tune Parameters by Using the MATLAB Language

	Tune Block Parameters by Using the Block Dialog Box
	Tune Block Parameters with Data Navigation
	Create Parameter Object
	Tune Parameter Object

	Sweep MATLAB Variables with MATLAB Scripting

	Boards, Blocks, and Drivers
	Use I/O Boards
	Install and Configure I/O Boards and Drivers
	PCI Bus Board
	Compact PCI Board
	PCMCIA Board

	Use I/O Driver Blocks
	View Simulink Desktop Real-Time Library
	Route Signals from an I/O Block
	Configure Channel Selection

	Use Analog I/O Drivers
	Configure I/O Driver Characteristics
	Normalize Scaling for Analog Inputs

	Use Vector CAN Drivers

	Custom I/O Driver Blocks
	Custom I/O Driver Basics
	Supported C Functions
	Unsupported C Functions
	Incompatibility with Operating System API Calls
	I/O Register Access from S-Functions Limitation

	Simulink Desktop Real-Time Examples
	Real-Time Van der Pol Simulation
	Water Tank Model with Dashboard
	Real-Time Signal Generator
	Real-Time Controller
	Real-Time Filter
	Frequency Measurement
	PWM Frequency and Duty Measurement
	Packet Input/Output
	Stream Input/Output
	CAN Input/Output
	CAN Input/Output with Vehicle Network Toolbox
	Execution Time Measurement and Block Profiling
	Apply Simulink Desktop Real-Time Model Templates to Create Real-Time Models
	UDP String Data and Message Handling
	Sync Models by Using Arduino Connected I/O Board

	Troubleshooting
	Troubleshoot Missing Desktop Real-Time Tab
	What This Issue Means
	Try This Workaround

	Troubleshoot sldrtext Incorrect Version Error
	What This Issue Means
	Try This Workaround

	Troubleshoot Delayed or Missing Scope Output
	What This Issue Means
	Try This Workaround

	Troubleshoot Signals Not Plotted in Scope Blocks
	What This Issue Means
	Try This Workaround

	Troubleshoot Vendor Software Missing Issues
	What This Issue Means
	Try This Workaround

	Troubleshoot Builds of Referenced Models
	What This Issue Means
	Try This Workaround

	Troubleshoot Slow or Halted Simulation on Windows
	What This Issue Means
	Try This Workaround

	Troubleshoot C++ Standard Template Library (STL) Compilation Errors for Real-Time Application
	What This Issue Means
	Try This Workaround

